- 2025年中总结
Just Jump
人生经历思考反思认知方法2025年中总结
2025年中总结。一如往年惯例,总结近半年工作中的体悟和经验。一、把大而难的事拆解成小而具体的小目标。专注解决小目标,每周迭代交付,先完成再完善。1.1把大任务拆解成具体可执行的小目标2025年5月起我开始做大模型相关的技术调研、技术升级和开发工作。传统的机器学习、深度学习算法和大模型的算法在技术知识上还是有很大的差异的。想要快速转型使用大模型做开发、训练,是需要些时间和精力投入的,这并不是一个简
- 充电桩 APP 开发:技术架构与核心功能
一品威客网
架构
随着新能源汽车的普及,充电桩APP成为连接用户与充电设施的关键枢纽。这类APP的开发需兼顾用户体验与运营效率,以下从技术实现与功能设计两方面展开分析。技术架构设计实时数据交互:采用MQTT协议实现充电桩状态(空闲/充电中/故障)的实时推送,确保用户获取最新信息。定位与地图服务:集成高德/Baidu地图SDK,通过POI搜索与路径规划算法,优化充电桩位置展示与导航体验。支付系统:对接微信/支付宝支付
- 物流运输企业如何构建数字化管理系统
在数字化浪潮下,物流运输企业构建数字化管理系统成为提升竞争力的关键。当前,企业常面临信息传递滞后、资源调配低效、运输监控不足等问题,构建数字化管理系统可有效解决这些难题。系统搭建需涵盖多个核心模块。运输管理模块通过智能调度算法,根据货物信息、车辆状态、路线情况,优化运输路径,实现车辆高效调配,减少空载率;仓储管理模块利用物联网技术,实时监控货物存储状态、库存数量,结合数据分析实现智能补货,提升仓储
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- 深入了解大数据领域Zookeeper的ACL权限管理
AGI大模型与大数据研究院
大数据zookeeperwpfai
深入了解大数据领域Zookeeper的ACL权限管理关键词:Zookeeper、ACL权限管理、大数据安全、分布式系统、访问控制、权限模型、数据保护摘要:本文深入探讨了Zookeeper中的ACL(AccessControlList)权限管理系统。作为分布式协调服务的核心组件,Zookeeper的ACL机制对于保障大数据环境中的数据安全至关重要。文章将从基础概念出发,详细解析ZookeeperAC
- 多模态AI:让机器像人一样“全感官”理解世界
Echo_Wish
前沿技术人工智能人工智能
多模态AI:让机器像人一样“全感官”理解世界咱们人类理解世界,从来不是只靠单一感官:眼睛看到画面,耳朵听到声音,皮肤感受到温度,嘴巴尝到味道,甚至鼻子闻到气味。正是这多感官的“多模态”输入,构筑了我们对复杂世界的深刻认知。而人工智能领域的多模态学习(MultimodalLearning),正是让机器拥有“多感官”理解能力的技术突破。今天,我想跟大家聊聊:多模态学习为何重要?当前有哪些创新模型?如何
- 2-感知机学习算法
罗东琦
统计学习笔记
感知机模型感知机学习策略学习算法算法收敛性对偶形式与线性SVM的异同感知机(perceptron)是一个线性二分类模型,其目的是寻找一个超平面将正负示例划分开,属于判别模型,也是神经网络与SVM的基础。感知机模型假设输入空间为χ⊆Rnχ⊆Rn,输出空间为Υ⊆{+1,−1}Υ⊆{+1,−1}。输入x∈χx∈χ表示实例的特征向量,输出y∈Υy∈Υ表示实例的类别。则下面的函数f(x)=sign(w⋅x+
- 【PaddleOCR】快速集成 PP-OCRv5 的 Python 实战秘籍--- PaddleOCR实例化 OCR 对象的参数介绍
云天徽上
PaddleOCRpythonocr开发语言人工智能文字识别
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 感知机学习
Collin_NLP
机器学习Python
基本概念:感知机是二类分类的线性分类模型,对应于特征空间中将实例划分为正负两类的分离超平面,属判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面。感知机的定义:从输入空间Rn到输出空间{+1,-1}的函数映射:f(x)=sign(w*x+b)模型参数:w----权值向量b----偏置wx+b=0-----分离超平面方程数据集{(xi,yi)}with1给定训练集,正例x1=(3,3)x
- 最新人工智能硬件培训AI基础入门学习课程参考2025版(离线AI语音视觉识别篇)
聆思科技AI芯片
聆思大模型开发板实践分享语音识别人机交互人工智能视觉检测嵌入式硬件mcuAI编程
前言端侧离线AI智能硬件作为AI技术的重要载体之一,凭借其无需依赖网络即可实现智能功能的特性,在一些网络条件受限或对数据隐私有较高要求的场景中,发挥着不可或缺的作用。本章基于CSK6大模型语音视觉开发板开箱即用的离线AI能力,分类列出学习课程知识点和实操参考,希望能够帮助大家快速掌握离线AI智能硬件的基础知识与实战技能,同时了解相关AI技术在实际场景的应用情况。正文按入下框架展开,相关理论和实操除
- 最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)
聆思科技AI芯片
聆思大模型开发板实践分享大模型语音交互人工智能语音识别视觉检测AI编程人机交互
前言在人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活教育等领域发挥着越来越重要的作用。针对日前前来咨询的广大客户对面向大模型智能硬件的学习需求,我们根据CSK6大模型语音视觉开发板已有功能,整理了一份适合基于本开发板进行教学活动的学习课程参考给大家备
- 机器学习,支持向量机svm和决策树xgboost介绍
suixinm
支持向量机机器学习决策树
支持向量机(SVM)和XGBoost都是非常强大且应用广泛的机器学习算法,但它们基于不同的原理,各有其优势和劣势,适用于不同的场景。以下是两者的主要区别和优劣势对比:1.核心思想与模型类型:SVM:核心思想:找到一个最优的超平面(在特征空间中),将不同类别的样本分隔开,并且使得该超平面到两类样本中最近的样本点(支持向量)的距离(间隔)最大化。核心是几何间隔最大化。模型类型:单个模型(虽然是核方法,
- Google 相机增强(GCam)框架原理初探:图像质量与计算摄影的系统性突破
观熵
影像技术全景图谱:架构调优与实战数码相机影像Camera
Google相机增强(GCam)框架原理初探:图像质量与计算摄影的系统性突破关键词:GCam、GoogleCamera、HDR+、SuperResZoom、Camera2API、多帧合成、算法流程、图像增强、夜视模式、Pixel相机移植摘要:GCam(GoogleCamera)作为Pixel系列设备图像质量表现的核心支撑,其背后的增强框架融合了Google长期积累的计算摄影技术,从HDR+到Sup
- RBAC权限模型如何让API访问控制既安全又灵活?
url:/posts/9f01e838545ae8d34016c759ef461423/title:RBAC权限模型如何让API访问控制既安全又灵活?date:2025-07-01T04:52:07+08:00lastmod:2025-07-01T04:52:07+08:00author:cmdragonsummary:RBAC权限模型通过用户、角色和权限的关联实现访问控制,核心组件包括用户、角色
- 【学习】《算法图解》第十章学习笔记:贪婪算法
程序员
一、贪婪算法概述贪婪算法(GreedyAlgorithm)是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。贪婪算法不从整体最优上加以考虑,它所做出的选择只是在某种意义上的局部最优选择。(一)算法适用场景贪婪算法适用于具有"贪心选择性质"的问题,即局部最优选择能导致全局最优解的问题。主要应用于:需要求解最优化问题问题具有贪心选择性质问题具有最优子结构性质(二
- 袋鼠数据库工具 7.99.1 版已上线
袋鼠数据库工具是一款AI驱动的热门数据库系统客户端(MariaDB/MySQL/Oracle/PostgreSQL/Redis/SQLite/SQLServer/...),支持建表、查询、模型、同步、导入导出等功能,支持Windows/Mac/Linux等操作系统,致力于打造一款好用、好玩、开发友好的开发者工具。重点特性介绍这个版本继续完善Redis支持,实现了Redis用户管理支持,实现了数据格
- 算法: 冒泡排序
Code溪
算法java算法数据结构
冒泡排序是一种简单的排序算法,通过相邻元素的比较和交换,使较大的元素逐渐"浮"到数组末尾。时间复杂度:最佳O(n)|平均O(n²)|最差O(n²)空间复杂度:O(1)稳定性:稳定应用场景/前提条件适用于小规模数据对几乎已排序的数据效率较高算法步骤比较相邻的元素。如果第一个比第二个大,就交换它们对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对这步做完后,最后的元素会是最大的数针对所有的元素
- MYSQL的基础信息如何存放
月堂
oracle数据库
一、存储位置与版本差异1、MySQL8.0+(事务化存储)系统表存储:所有元数据(表结构、索引、权限等)统一存储在mysql系统库的InnoDB事务表中(如mysql.tables、mysql.columns),物理文件为mysql.ibd。优势:性能优化:INFORMATION_SCHEMA改为内存视图,查询效率提升(无需解析文件)。原子DDL:DDL操作(如建表、删表)完全事务化,失败自动回滚
- 噪声预测 vs. 数据预测:扩散模型中的目标函数选择与生成表现对比
观熵
扩散模型工程指南机器学习算法人工智能
噪声预测vs.数据预测:扩散模型中的目标函数选择与生成表现对比关键词:噪声预测、数据重建、MSELoss、ELBO、score-basedmodeling、DDPM、EDM、训练目标、采样策略摘要:扩散模型的训练目标设计直接影响模型收敛速度、生成质量与采样路径稳定性。最初的DDPM采用了预测添加噪声ε的方法,但近年来诸如EDM(ElucidatedDiffusionModels)等模型开始转向对原
- 【力扣—剑指 Offer(第 2 版)简单题目解析汇总】
Wupke
剑指offer数据结构与算法学习LeetCodeleetcode剑指offer数据结构与算法
【力扣—剑指Offer(第2版)简单题目解析汇总】说明1、基本字符串数组数组-排序矩阵/模拟枚举2、算法动态规划深度优先搜索广度优先搜索递归分治记忆化搜索快速选择二分查找3、基础数据结构树(二叉树)二叉搜索树栈队列堆(优先队列)哈希表链表4、技巧性题目双指针位运算计数设计说明简单题目共计38道,按照标签分类为:基本、算法、基础数据结构、技巧等,具体如下。1、基本字符串剑指Offer05.替换空格.
- 【GitHub开源项目实战】高频交易系统实战解析:基于 Nautilus Trader 的策略回测与事件驱动架构优化
观熵
GitHub开源项目实战github开源架构
高频交易系统实战解析:基于NautilusTrader的策略回测与事件驱动架构优化关键词:高频交易、事件驱动架构、NautilusTrader、量化回测、算法交易、PythonCython、交易引擎、回测系统、交易策略框架、实战优化摘要:本篇博客围绕GitHub上高质量的开源项目nautechsystems/nautilus_trader展开系统性实战解析。NautilusTrader是一套为专业
- 【点云压缩】Haar小波变换与RAHT自适应区域层级变换
丶契阔
算法
Haar小波小波变换由一堆小波基和其系数组成,小波基又分为母小波(低频的)和父小波(高频的)。常用于二维图形处理的小波变换是Haar小波变换,Haar小波变换具有压缩比、抗干扰、速度快的特点,经过小波变换后的系数数据会变得具有规律性,方便后续处理算法进行压缩,同时一些值较小的分量置0不影响图片整体观感。截取了PCL-AVS-PCC一段小波变换点云压缩的代码voidWaveletCoreTransf
- Redis 与其他数据库的比较
jarenyVO
redis数据库redis缓存
Redis与其他数据库的比较以下是Redis与传统关系型数据库及其他NoSQL数据库的对比列表:Redisvs关系型数据库(MySQL/Oracle)对比维度Redis关系型数据库数据模型键值对、丰富数据结构(String/Hash/Set等)表结构,严格的行列模型持久化可配置(RDB快照/AOF日志)默认持久化,WAL日志+数据文件事务支持简单事务(无回滚)ACID事务,支持复杂回滚查询能力仅支
- 从零开始大模型开发与微调:PyTorch中的卷积函数实现详解
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch中的卷积函数实现详解1.背景介绍1.1大模型开发的意义1.2卷积神经网络在大模型中的应用1.3PyTorch框架简介2.核心概念与联系2.1卷积的数学定义2.2卷积神经网络的组成2.2.1卷积层2.2.2池化层2.2.3全连接层2.3卷积与大模型的关系3.核心算法原理具体操作步骤3.1卷积的前向传播3.2卷积的反向传播3.3卷积的优化策略3.3.1卷积核大小
- 【Spring AI】 1接入 Ollama实践
占星安啦
springaijavaspringaiollama
SpringAI接入Ollama实践学习笔记Ollama官方文档SpringAI快速开始SpringAIOllama集成文档1.pom.xml依赖配置前置条件:请确保你已安装好Java17+、Maven、Ollama,并已下载好所需大模型。在pom.xml中添加SpringAI及Ollama相关依赖:org.springframework.bootspring-boot-starter-webor
- PyTorch里.pt和.pth的区别
sky丶Mamba
AIpytorch人工智能python
在PyTorch中,.pt和.pth文件均用于保存模型,但两者在设计初衷、存储内容和使用场景上存在差异。以下是详细对比:1.核心区别特性.pt文件.pth文件存储内容完整模型(结构+参数+优化器状态等)仅模型参数(state_dict)文件大小较大(包含额外元数据)较小(仅参数)加载方式直接加载,无需定义模型结构需先实例化模型,再加载参数适用场景部署、跨环境迁移训练中断恢复、参数共享2.技术细节.
- 苹果加码AI合作:继OpenAI后再携手Meta|TodayAI
TodayAI日报
TodayAI日报人工智能苹果Meta
两家长期竞争对手的合作前景近日,据《华尔街日报》报道,苹果公司(Apple)和Meta公司(Facebook母公司)正在就一项潜在合作进行讨论,旨在将Meta的生成式AI模型整合到AppleIntelligence中。这一合作的前景备受关注,因其有可能为两家长期竞争对手带来新的合作机会。在本月初的全球开发者大会(WWDC)上,苹果宣布与OpenAI达成合作协议,将在iOS18和其他设备上的特定任务
- 深入理解 PyTorch 中的自动微分机制与 `.detach()` 用法全解析
Accelemate
pytorch人工智能python深度学习gantorch
作者:Accelemate发布时间:2025年6月26日本文摘要:本文将从零开始,系统性地讲解PyTorch中的计算图、反向传播、withtorch.no_grad()、.detach()等核心机制,结合实践场景如可视化中间层特征图、GAN模型中对生成器的冻结操作等内容,帮助你在实际开发中灵活、正确地使用自动微分特性。一、自动微分基础概念1.1什么是自动微分(Autograd)?PyTorch的自
- C++(20/23)标准模板库编程 - 1 C++ 回顾
akluse
C++c++开发语言
引言现代C++编程最引人注目的特点或许并非其语言本身的表达性语法与语义,而是标准模板库(STL)。STL是一个包含多功能模板类与算法的庞大集合。若运用得当,STL能显著简化和提升高性能优质软件的开发流程。然而对于许多C++程序员——无论是初学者还是资深开发者——要掌握如何有效运用STL的编程结构往往令人望而生畏。《实用C++STL编程》作为指导性教材,将教会您如何成功应用STL的类、算法及其他编程
- YOLOv11性能评估全解析:从理论到实战的指标指南
芯作者
D2:YOLOYOLO计算机视觉
深入剖析目标检测核心指标,掌握模型优化的关键密码为什么需要性能评估指标?在目标检测领域,YOLO系列模型以其卓越的速度-精度平衡成为行业标杆。当我们训练或使用YOLOv11模型时,一个核心问题始终存在:如何量化模型的性能?性能评估指标正是回答这个问题的关键工具,它们不仅衡量模型效果,更是模型优化迭代的导航灯。本文将系统解析YOLOv11的七大核心评估指标,结合理论公式、可视化解释和实战代码,带您深
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa