《Over the Air Deep Learning Based Radio Signal Classification》思维导图

制作了论文的思维导图,用于学习和交流

2018-Over the Air Deep Learning Based Radio Signal Classification.jpg

Over the air deep learning based radio signal classification

1. 论文针对问题

1.1. 利用CV领域的深度学习网络+OTA、合成数据实现调制信号的分类识别

2. 问题的解决方法

2.1. 思路

  1. 利用最新深度学习的深度网络resnet来训练模型,进行调制信号的识别

2.2. 数据集

2.2.1. 标签

  1. Normal Classes

OOK, 4ASK, BPSK, QPSK, 8PSK, 16QAM, AM-SSB-SC, AM-DSB-SC, FM, GMSK, OQPSK

  1. Difficult Classes

OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, FM, GMSK, OQPSK

2.2.2. 生成方法

several simulated wireless channels generated from the model

1

over the air (OTA) transmission channel of clean signals with no synthetic channel impairments

2
3

channel initialization of variables

4

2.3. 模型

Baseline Method

  1. 思路

leverages the list of higher order moments and other aggregate signal behavior statistics given in table

5
  1. 方法

2.1. baseline模型 :XGBoost

数据 特征:1024样本统计特征

数据 降维 :1024∗2维→28维

效果:outperforms a single decision tree or support vector machine (SVM) significantly on the task

2.2. Convolutional Neural Network

思路:CNN在CV中的运用地非常好

模型: VGG

滤波器:最小 3x3

池化层:最小 2x2

效果: This represents a simple DL CNN design approach which can be readily trained and deployed to effectively accomplish many small radio signal classification tasks

优势: 无需手动提取特征(do not perform any expert feature extraction or other pre-processing on the raw radio signal , instead allowing the network to learn raw time-series features directly on the high dimension data)

2.3. Residual Neural Network

思路: 更深的网络模型+残差网络特性,提供更好的性能

模型: ResNet

6

residual unit

6

stack of residual units

7

调整:全连接层激活函数 the scaled exponential linear unit (SELU),a slight improvement over conventional ReLU performance,not ReLU

对比:

RestNet:236,344 参数
CNN/VGG:257,099 参数

3. SENSING PERFORMANCE ANALYSIS

A. Classification on Low Order Modulations

高SNR: VGG/CNN和ResNet差不多,ResNet 比 baseline 获得大概 5dB 优势
ResNet: 99.8%, VGG: 98.3%, Baseline: 94.6%

0

B. Classification under AWGN conditions

数据: N = 239, 616 examples

模型: L = 6 residual stacks

效果: the best performance at both high and low SNRs on the difficult dataset by a margin of 2-6 dB in improved sensitivity for equivalent classification accuracy.

0

C. Classification under Impairments

效果:

  1. ResNet

ResNet performance improves under LO offset rather than degrading.

At high SNR performance ranges from around 80% in the best case down to about 59% in the worst case.

0
  1. Baseline

in the best case at high SNR this method obtains about 61% accuracy while in the worst case it degrades to around 45% accuracy

0

D. Classifier performance by depth

L=5:121 layers, 229k trainable parameters

L = 0: 25 layers and 2.1M trainable parameters

0

E. Classification performance by modulation type

10dB SNR 可以让所有调制类型都达到80%以上的正确率

0

融合矩阵中error最大的调制类型

  1. high order phase shift keying (PSK) (16/32-PSK)

  2. high order quadrature amplitude modulation (QAM) (64/128/256-QAM)

  3. AM modes (confusing with-carrier (WC) and suppressed-carrier (SC)

  4. high order QAM and PSK can be extremely difficult to tell apart through any approach

0

F. Classifier Training Size Requirements

样本数量:
4-8k样本: 模型正确率为随机

100M样本左右: 提升5-20%

200万的所有数据训练: 单个 NVIDIA V100 GPU (125Tera-FLOPS) 需要花费大约16小时

从100M提升到200M:并没有看到非常大的性能提升;在高SNR时,正确率大约都为95%

0
0

单个样本序列长度

0

G. Over the air performance

利用USRP装置,生成了1.44M的数据集

利用NVIDIA V100 GPU训练了大约14小时

所有样本在SNR为10dB,测试集正确率为95.6%

0

H. Transfer learning over-the-air performance

思路: 利用迁移学习把训练好的模型做资源整合利用;freeze 网络参数, 再次训练时只更新租后的3层全连接层

方法: 利用ResNet在1.2M合成数据中训练,然后在OTA样本中测试

no fine-tuning:24类中,正确率为64% - 80%

fine-tuning:24类中,正确率在84%-96%

0
0
0

4. 总结

4.1. 很不错

你可能感兴趣的:(《Over the Air Deep Learning Based Radio Signal Classification》思维导图)