- 数据仓库与数据湖的协同工作:智慧数据管理的双引擎
Echo_Wish
实战高阶大数据人工智能科技大数据
数据仓库与数据湖的协同工作:智慧数据管理的双引擎引言在数据驱动的今天,企业和组织收集和存储的数据量正以惊人的速度增长。如何高效管理和利用这些数据,成为了决策者和技术专家的共同难题。为了解决这一问题,数据仓库(DataWarehouse)和数据湖(DataLake)这两种技术应运而生,分别在不同的应用场景中发挥着重要作用。然而,随着数据管理需求的日益复杂,单一的数据仓库或数据湖并无法完全满足现代企业
- Apache ZooKeeper 分布式协调服务
slovess
分布式apachezookeeper
1.ZooKeeper概述1.1定义与定位核心定位:分布式系统的协调服务,提供强一致性的配置管理、命名服务、分布式锁和集群管理能力核心模型:基于树形节点(ZNode)的键值存储,支持Watcher监听机制生态地位:Hadoop/Kafka等生态核心依赖,分布式系统基础设施级组件1.2设计目标强一致性:所有节点数据最终一致(基于ZAB协议)高可用性:集群半数以上节点存活即可提供服务顺序性:全局唯一递
- Hadoop常用端口号
海洋 之心
Hadoop问题解决hadoophbase大数据
Hadoop是一个由多个组件构成的分布式系统,每个组件都会使用一些特定的端口号来进行通信和交互。以下是Hadoop2.x常用的端口号列表:HDFS端口号:NameNode:50070SecondaryNameNode:50090DataNode:50010DataNode(数据传输):50020YARN端口号:ResourceManager:8088NodeManager:8042MapReduc
- python编译成dll文件_Python 调用DLL文件
weixin_39682511
python编译成dll文件
http://blog.csdn.net/magictong/archive/2008/10/14/3075478.aspx貌似原文的网页服务器有问题,总是load不全,所以备个份:Python调用windows下DLL详解在python中某些时候需要C做效率上的补充,在实际应用中,需要做部分数据的交互。使用python中的ctypes模块可以很方便的调用windows的dll(也包括linux下
- Hadoop综合项目——二手房统计分析(可视化篇)
WHYBIGDATA
大数据项目hadoop大数据
Hadoop综合项目——二手房统计分析(可视化篇)文章目录Hadoop综合项目——二手房统计分析(可视化篇)0、写在前面1、数据可视化1.1二手房四大一线城市总价Top51.2统计各个楼龄段的二手房比例1.3统计各个城市二手房标签的各类比例1.4统计各个城市各个楼层的平均价格1.5统计各个城市二手房优势的各类比例1.6统计各个城市二手房数量和关注人数的关系1.7统计各个城市二手房规格的各类比例1.
- 大数据之-hdfs+hive+hbase+kudu+presto集群(6节点)
管哥的运维私房菜
大数据hdfshivekuduprestohbase
几个主要软件的下载地址:prestohttps://prestosql.io/docs/current/index.htmlkudurpm包地址https://github.com/MartinWeindel/kudu-rpm/releaseshivehttp://mirror.bit.edu.cn/apache/hive/hdfshttp://archive.apache.org/dist/ha
- 高可用(HA)架构
weixin_34344403
运维系统架构java
http://aokunsang.iteye.com/blog/2053719浅谈web应用的负载均衡、集群、高可用(HA)解决方案http://zhuanlan.51cto.com/art/201612/524201.htm互联网架构“高可用”http://www.blogjava.net/ivanwan/archive/2013/12/25/408014.htmlLVS/Nginx/HAPro
- go hive skynet_MMORPG游戏服务器技术选型参考-Go语言中文社区
weixin_39908948
gohiveskynet
游戏服务器一般追求稳定和效率,所以偏向于保守,使用的技术手段也是以已经过验证、开发人员最熟悉、能HOLD为主要前提。1、典型按场景分服设计开发语言:c++数据库:mysql架构:多个网关:维持与玩家间的SOCKET连接,可处理广播、断线重连等逻辑。一个或多个账号登陆验证服务器:处理登陆、排队等逻辑。多个场景服务器:处理在本地图上能解决的逻辑,如:打怪、玩家间战斗、接任务、完成任务等各种不需要跨地图
- Linux安装Anaconda、Miniconda
让我安静会
配置与安装linux运维服务器
Anaconda下载:https://repo.anaconda.com/archive/MinicondaDocument:https://docs.conda.io/projects/miniconda/en/latest/index.html进入Linux系统,到/data/file/文件夹下,直接将anaconda下载到该文件夹中:wgethttps://repo.anaconda.com
- spark任务运行
冰火同学
Sparkspark大数据分布式
运行环境在这里插入代码片[root@hadoop000conf]#java-versionjavaversion"1.8.0_144"Java(TM)SERuntimeEnvironment(build1.8.0_144-b01)[root@hadoop000conf]#echo$JAVA_HOME/home/hadoop/app/jdk1.8.0_144[root@hadoop000conf]#
- Hadoop 的分布式缓存机制是如何实现的?如何在大规模集群中优化缓存性能?
晚夜微雨问海棠呀
分布式hadoop缓存
Hadoop的分布式缓存机制是一种用于在MapReduce任务中高效分发和访问文件的机制。通过分布式缓存,用户可以将小文件(如配置文件、字典文件等)分发到各个计算节点,从而提高任务的执行效率。分布式缓存的工作原理文件上传:用户将需要缓存的文件上传到HDFS(HadoopDistributedFileSystem)。文件路径可以在作业配置中指定。作业提交:在提交MapReduce作业时,用户可以通过
- 集群与分片:深入理解及应用实践
一休哥助手
架构系统架构
目录引言什么是集群?集群的定义集群的类型什么是分片?分片的定义分片的类型集群与分片的关系集群的应用场景负载均衡高可用性分片的应用场景大数据处理数据库分片集群与分片的架构设计系统架构设计数据存储设计案例分析Hadoop集群Elasticsearch分片性能优化策略集群性能优化分片性能优化挑战和解决方案总结参考资料引言在现代计算系统中,处理大规模数据和提高系统的可靠性已经成为了基础需求。集群和分片是两
- hive spark读取hive hbase外表报错分析和解决
spring208208
hivehivesparkhbase
问题现象使用Sparkshell操作hive关联Hbase的外表导致报错;hive使用tez引擎操作关联Hbase的外表时报错。问题1:使用tez或spark引擎,在hive查询时只要关联hbase的hive表就会有问题其他表正常。“org.apache.hadoop.hbase.client.RetriesExhaustedException:Can’tgetthelocations”问题2:s
- 【Python】解决PyTorch报错:PytorchStreamReader failed reading zip archive: failed finding central的解决方案
I'mAlex
pythonpytorch开发语言
在使用PyTorch时,遇到“PytorchStreamReaderfailedreadingziparchive:failedfindingcentral”错误通常是由于损坏的模型文件或不兼容的文件版本导致的。这种问题在加载模型或数据时比较常见。以下是一些排查和解决该问题的步骤。博主简介:现任阿里巴巴嵌入式技术专家,15年工作经验,深耕嵌入式+人工智能领域,精通嵌入式领域开发、技术管理、简历招聘
- 解释归档和非归档模式之间的不同和他们的各自的优缺点?思维导图 代码示例(java 架构)
用心去追梦
java架构oracle
归档模式(ArchiveMode)和非归档模式(NoArchiveMode)是数据库管理系统中两种不同的日志记录方式,主要用于控制如何处理重做日志文件。这两种模式对数据库的恢复能力、性能以及备份策略有着重要影响。归档模式vs非归档模式归档模式(ArchiveMode)定义:当启用归档模式时,数据库会将填满的在线重做日志文件复制到一个或多个归档位置。作用:支持完整的数据库恢复,包括介质故障后的恢复。
- MariaDB数据库部署
m0_修道成仙
Linuxlinux数据库
MariaDB数据库·数据库介绍·MySQL与MariaDB·数据库部署1.安装MariaDB数据库2.重启mariadb服务并加入开机启动项3.!数据库初始化4.设置防火墙策略5.登录数据库·数据库常用语句·创建数据库·查询指定位置数据·数据库备份·彻底删除数据库·恢复数据·数据库介绍数据库:是指按照某些特定结构来存储数据资料的数据仓库数据库管理系统:是一种能够对数据库中存放的数据进行建立、修改
- 数据总线/一致性维度/总线矩阵
DouMiaoO_Oo
数据仓库
数据孤岛企业内部各个系统中的数据被隔离在不同的数据库中,无法进行共享和整合,严重影响了企业的决策能力和运营效率。数据仓库数据总线一种技术解决方案,旨在实现数据仓库与各个数据源之间的数据集成、交换和共享,通常做法是将所有的数据源连接到一条共享的数据总线上。数据总线通过建立数据集成层,实现了不同数据源之间的数据传输和转换,从而打破数据孤岛,实现数据共享。数据总线连接多个数据源,并将数据按照一定的规则进
- Ubuntu下配置安装Hadoop 2.2
weixin_30501857
大数据java运维
---恢复内容开始---这两天玩Hadoop,之前在我的Mac上配置了好长时间都没成功的Hadoop环境,今天想在win7虚拟机下的Ubuntu12.0464位机下配置,然后再建一个组群看一看。参考资料:1.InstallingsinglenodeHadoop2.2.0onUbuntu:http://bigdatahandler.com/hadoop-hdfs/installing-single-
- windows 安装nvidaia驱动和cuda
njl_0114
配置环境windows
安装nvidaia驱动和cuda官网搜索下载驱动https://www.nvidia.cn/drivers/lookup/这里查出来的都是最高支持什么版本的cuda安装时候都默认精简就行官网下载所需版本的cuda包https://developer.nvidia.com/cuda-toolkit-archive安装成功但是nvcc-V失败,除了安装时候默认的加入的环境变量外。添加环境变量C:\Pr
- Apache Iceberg 与 Apache Hudi:数据湖领域的双雄对决
夜里慢慢行456
大数据大数据
在数据存储和处理不断发展的领域中,数据湖仓的概念已经崭露头角,成为了一种变革性的力量。数据湖仓结合了数据仓库和数据湖的最佳元素,提供了一个统一的平台,支持数据科学、商业智能、人工智能/机器学习以及临时报告等多种关键功能。这种创新的方法不仅促进了实时分析,还显著降低了平台成本,增强了数据治理,并加速了用例的实现。数据存储和处理的演变催生了被称为数据湖仓的现代分析平台。这些平台旨在解决传统架构的局限性
- 探索数据云的无缝桥梁:Apache Spark 与 Snowflake 的完美结合
窦育培
探索数据云的无缝桥梁:ApacheSpark与Snowflake的完美结合spark-snowflakeSnowflakeDataSourceforApacheSpark.项目地址:https://gitcode.com/gh_mirrors/sp/spark-snowflake项目介绍在大数据处理的浩瀚宇宙中,Snowflake以其独特的云数据仓库能力闪耀,而ApacheSpark则是数据分析和
- 2014 6月,比较老了
金金2019
AwesomeBigDataAcuratedlistofawesomebigdataframeworks,resourcesandotherawesomeness.Inspiredbyawesome-php,awesome-python,awesome-ruby,hadoopecosystemtable&big-data.Yourcontributionsarealwayswelcome!Awes
- 记一次hivemetastore启动报错
不吃饭的猪
hive
1,启动hivemetastore后报错日志2,排查lib下的mysql的驱动也在,这里和mysql的驱动大小一样3,把hive-site.xml中无关的配置都删掉,重启metastore还是报错4,最后排查,这个节点rpm部署了hive,现在只是copy了一个hive的目录过来,导致/usr/bin/hive这个里面和现在部署的安装包不是同一个
- Hive服务启动 之 metastore配置 和 hiveserver2
龍浮影
hive
Hive服务启动之metastore服务配置和hiveserver2 配置hive的时候都需要配置hive-site.xml,配置过程中可以选择hive直连或者使用metastore服务间接连接,那么他们之间有什么区别呢? 首先贴直连配置代码:javax.jdo.option.ConnectionURLjdbc:mysql://hadoop102:3306/metastore?useSSL=fal
- maven插件学习(maven-shade-plugin和maven-antrun-plugin插件)
catcher92
javamavenmaven学习大数据
整合spark3.3.x和hive2.1.1-cdh6.3.2碰到个问题,就是spark官方支持的hive是2.3.x,但是cdh中的hive确是2.1.x的,项目中又计划用spark-thrift-server,导致编译过程中有部分报错。其中OperationLog这个类在hive2.3中新增加了几个方法,导致编译报错。这个时候有两种解决办法:修改spark源码,注释掉调用OperationLo
- hive的metastore和hiveserver2服务的启动
要开心吖ZSH
hivehivehadoop大数据
1、描述nohup:放在命令开头,表示不挂起,也就是关闭终端进程也继续保持运行状态/dev/null:是Linux文件系统中的一个文件,被称为黑洞,所有写入改文件的内容都会被自动丢弃2>&1:表示将错误输出重定向到标准输出上第一个2表示错误输出,另外0表示标准输入,1表示标准输出&:放在命令结尾,表示后台运行一般会组合使用:nohup[xxx命令操作]>file2>&1&,表示将xxx命令运行的结
- 5. clickhouse 单节点多实例部署
Toroidals
大数据组件安装部署教程clickhouse单节点多实例伪分布安装部署
环境说明:主机名:cmc01为例操作系统:centos7安装部署软件版本部署方式centos7zookeeperzookeeper-3.4.10伪分布式hadoophadoop-3.1.3伪分布式hivehive-3.1.3-bin伪分布式clickhouse21.11.10.1-2单节点多实例dolphinscheduler3.0.0单节点kettlepdi-ce-9.3.0.0单节点sqoop
- 蓝易云 - HBase基础知识
蓝易云
hbase数据库大数据phppython人工智能
HBase是一个分布式、可伸缩、列式存储的NoSQL数据库,它建立在Hadoop的HDFS之上,提供高可靠性、高性能的数据存储和访问。以下是HBase的基础知识:数据模型:HBase以表的形式存储数据,每个表由行和列组成,可以动态添加列族。每行由唯一的行键标识,列族和列限定符(Qualifier)用于唯一标识列。架构:HBase采用分布式架构,数据被分散存储在多个RegionServer上,每个R
- 数据仓库与数据挖掘记录 二
匆匆整棹还
数据仓库数据挖掘人工智能
1.数据仓库的产生从20世纪80年代初起直到90年代初,联机事务处理一直是关系数据库应用的主流。然而,应用需求在不断地变化,当联机事务处理系统应用到一定阶段时,企业家们便发现单靠拥有联机事务处理系统已经不足以获得市场竞争的优势,他们需要对其自身业务的运作以及整个市场相关行业的态势进行分析,进而做出有利的决策。这种决策需要对大量的业务数据包括历史业务数据进行分析才能得到。把这种基于业务数据的决策分析
- 数据仓库与数据挖掘记录 三
匆匆整棹还
数据挖掘
数据仓库的数据存储和处理数据的ETL过程数据ETL是用来实现异构数据源的数据集成,即完成数据的抓取/抽取、清洗、转换.加载与索引等数据调和工作,如图2.2所示。1)数据提取(Extract)从多个数据源中获取原始数据(如数据库、日志文件、API、云存储等)。数据源可能是结构化(如MySQL)、半结构化(如JSON)、非结构化(如文本)。关键技术:SQL查询、Web爬虫、日志采集工具(如Flume)
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文