题解:
(1)若四个位置全是1,则输出2
(2)若全为0则输出0,
(3)其他情况都输出1
/*
author : Mzx
*/
#include
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> PII;
const ll mod=1e9+7;
const int INF=0x3f3f3f3f;
const int maxn=1e5+10;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define x first
#define y second
int read () {
int k=0,f=1;
char c=getchar ();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar ();}
while (c>='0'&&c<='9') {k=k*10+c-'0';c=getchar ();}
return k*f;
}
void solve()
{
int a,b,c,d;
cin>>a>>b>>c>>d;
if(a==0&&b==0&&c==0&&d==0) cout<<0<<endl;
else if(a==1&&b==1&&c==1&&d==1) cout<<2<<endl;
else cout<<1<<endl;
}
int main()
{
ios;
int t;cin>>t;
while(t--) {
solve();
}
return 0;
}
题解:一道思维题,很容易得知d=2时花费总是最大的,证明比较容易就不在此赘述。
/*
author : Mzx
*/
#include
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> PII;
const ll mod=1e9+7;
const int INF=0x3f3f3f3f;
const int maxn = 2e5+10;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define x first
#define y second
int read () {
int k=0,f=1;
char c=getchar ();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar ();}
while (c>='0'&&c<='9') {k=k*10+c-'0';c=getchar ();}
return k*f;
}
void solve() {
int n;cin>>n;
cout<<2<<endl;
for(int i = 1;i <= n;i += 2)
{
int p = i;
while(p <= n)
{
cout<<p<<' ';
p *= 2;
}
}
cout<<endl;
}
int main()
{
ios;
int t; cin>>t;
while(t--)
{
solve();
}
return 0;
}
题解:二分答案,check函数里对n个人分情况算
(1)如果s[i] >= mid的话,用need计数,计算剩下多少需要去完成的任务,
(2)如果s[i] < mid的话,用sum记录剩下的时间可以完成多少“不擅长的任务”.
最后比较一下need和sum的大小即可。
/*
author : Mzx
*/
#include
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> PII;
const ll mod=1e9+7;
const int INF=0x3f3f3f3f;
const int maxn = 2e5+10;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define x first
#define y second
int read () {
int k = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9') {
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
k = k * 10 + c - '0';
c = getchar();
}
return k * f;
}
ll s[maxn];
ll n,m;
bool check(ll x)
{
ll need = 0;
ll sum = 0;
for(int i = 1;i <= n;i++)
{
if(s[i] >= x) need += (s[i] - x);
else sum += (x-s[i])/2;
}
if(need <= sum) return true;
else return false;
}
void solve() {
cin>>n>>m;
memset(s,0,sizeof s);
for(int i = 1;i<=m;i++)
{
int x;
cin>>x;
s[x]++;
}
ll l = 1,r = INF;
while(l < r)
{
ll mid = (l + r)>>1;
if(check(mid)) r = mid;
else l = mid + 1;
}
cout<<l<<endl;
}
int main()
{
ios;
int t; cin>>t;
while(t--)
{
solve();
}
return 0;
}
题解:b[i]通过转换可以得到不等式:
就可以转换成一个基本的区间贪心模型了。
PS:需要注意的是,要特判b[i] = 0的情况。
/*
author : Mzx
*/
#include
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> PII;
const ll mod=1e9+7;
const int INF=0x3f3f3f3f;
const int maxn = 2e5+10;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define x first
#define y second
int read () {
int k=0,f=1;
char c=getchar ();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar ();}
while (c>='0'&&c<='9') {k=k*10+c-'0';c=getchar ();}
return k*f;
}
void solve() {
int n;
cin >> n;
vector<int> b(n);
for (int j = 0; j < n; j++){
cin >> b[j];
}
vector<int> L(n), R(n);
for (int j = 0; j < n; j++){
if (b[j] == 0){
L[j] = j + 2;
R[j] = n;
} else {
L[j] = (j + 1) / (b[j] + 1) + 1;
R[j] = (j + 1) / b[j];
}
}
vector<vector<int>> P(n+1);
for (int j = 0; j < n; j++){
P[L[j]].push_back(j);
}
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
vector<int> a(n);
for (int j = 1; j <= n; j++){
for (int x : P[j]){
pq.push(make_pair(R[x], x));
}
int p = pq.top().second;
pq.pop();
a[p] = j;
}
for (int j = 0; j < n; j++){
cout << a[j]<<' ';
}
cout<<endl;
}
int main()
{
ios;
int t; cin>>t;
while(t--)
{
solve();
}
return 0;
}