NLP之LSTM原理剖析

文章目录

  • 背景
    • simpleRNN的局限性
  • LSTM
    • 手写一下sigmoid例子
    • 支持长记忆的神经网络
    • 解读3重门

背景

SimpleRNN有一定局限性,
NLP之LSTM原理剖析_第1张图片

  1. 图片上的文字内容:

    • 图片标题提到“SimpleRNN是一种基础模型。它用于解决序列型问题,其中的每一步的输出会影响到下一步的结果。图中的公式和结构图都展示了这种关系。”
    • 下面给出了四行伪代码,描述了SimpleRNN的计算方式。简化为以下形式:
      1. out1和ht1是通过输入x1、前一时刻的状态h(t-1)、权重w1、u1以及偏置项bias进行某种激活函数的计算得到的。
      2. out2和ht2是通过输入x2、前一时刻的状态ht1、权重w2、u2以及偏置项bias进行计算得到的。
      3. out3和ht3是通过输入x3、前一时刻的状态ht2、权重w3、u3以及偏置项bias进行计算得到的。
      4. out4和ht4的计算方式未完整给出,但可以推测其与之前的计算方式类似。
  2. 图片中的图示内容:

    • 图中展示了一个序列型的网络结构,其中每个时间步都有一个输入和一个输出。
    • 从左到右,我们可以看到数据是如何流动的。每个时间步的输入都被标记为“输入”,每个时间步的输出被标记为“输出”,并且每个时间步之间都有一个状态“状态”。
    • 图中还展示了这些状态是如何从一个时间步传递到下一个时间步的,表现了RNN的“记忆”特性。
  3. 解读SimpleRNN的工作机制:

    • SimpleRNN在每个时间步都接受一个输入,并产生一个输出。但与一般的神经网络不同,SimpleRNN还维护一个“状态”,这个状态从一个时间步传递到下一个时间步。
    • 这个状态可以被视为网络的“记忆”,它携带了过去的信息,并用于影响当前时间步的计算。
    • 伪代码展示了每个时间步输出和状态的计算方法,这两者都依赖于当前的输入、前一时间步的状态、权重和偏置。
  4. 识别图中的位置:

    • 在图中,“我、爱、祖国”被分别标注在每一个时间步的上方。它们与每个时间步的“计算”模块相连接。
    • “记忆”则被标注在每个时间步的中心,并在时间步之间传递。
  5. 解释它们在SimpleRNN中的角色:

    • “我、爱、祖国”:这些词分别代表每个时间步的输入。在这个例子中,我们可以认为是在处理一个文本序列,即“我 爱 祖国”。在每一个时间步,“计算”模块会接收这些词作为输入。
    • “记忆”:这代表SimpleRNN的内部状态或“隐藏状态”。它会在时间步之间传递,并保存之前时间步的信息。在每一个时间步,“记忆”会被更新,并用于下一个时间步的计算。

所以,答案是“我、爱、祖国”是输入,而“记忆”代表SimpleRNN的内部状态。如果您有其他问题或需要进一步的澄清,请随时告诉我。

简而言之,图片展示了SimpleRNN如何在每个时间步接受输入,并根据前一时间步的“记忆”产生输出的过程。

simpleRNN的局限性

  1. 什么是神经网络和simpleRNN?

    • 神经网络是一种用于数据处理和模式识别的计算模型。它们通常用于诸如图像识别、自然语言处理等任务。
    • simpleRNN(简单循环神经网络)是一种特殊类型的神经网络,用于处理序列数据,比如文本或时间序列数据。
  2. simpleRNN的主要局限性以及简短解释

    • 梯度消失和梯度爆炸问题: 在处理长序列时,simpleRNN很难学习到早期信息的重要性,这主要是因为梯度(即用于更新模型权重的信号)会随时间减小(消失)或增大(爆炸)。

    • 短期记忆: simpleRNN通常只能记住短期的信息,这意味着它不擅长处理具有长期依赖关系的任务。

    • 计算效率: 尽管结构相对简单,但simpleRNN在处理非常长的序列时可能会变得计算密集和低效。

    • 过拟合: 因为模型较简单,所以它容易过拟合,即在训练数据上表现很好,但在未见过的数据上表现差。

这些是简单循环神经网络(simpleRNN)的主要局限性。

LSTM

手写一下sigmoid例子

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(-5.0, 5.0, 0.1)
print(x)
y = 1 / (1 + np.exp(-x))
print(y)
plt.plot(x, y)
plt.show()

NLP之LSTM原理剖析_第2张图片

支持长记忆的神经网络

NLP之LSTM原理剖析_第3张图片
NLP之LSTM原理剖析_第4张图片
解读并给出图片中所示网络结构的流程解释。

  1. 识别图中的关键部分:

    • A: 网络的核心计算单元。
    • X t − 1 X_{t-1} Xt1, X t X_t Xt, X t + 1 X_{t+1} Xt+1: 输入序列中的各个时间步。
    • h t − 1 h_{t-1} ht1, h t h_t ht, h t + 1 h_{t+1} ht+1: 对应时间步的输出或隐藏状态。
    • “tanh”激活函数,加法和乘法运算。
  2. 为每一部分提供描述:

    • A: 它是网络的核心部分,负责进行所有的计算。接收输入和前一个时间步的隐藏状态,输出当前时间步的隐藏状态。
    • X t − 1 X_{t-1} Xt1, X t X_t Xt, X t + 1 X_{t+1} Xt+1: 这些是顺序输入到网络中的数据,分别对应于连续的时间步。
    • h t − 1 h_{t-1} ht1, h t h_t ht, h t + 1 h_{t+1} ht+1: 这些是网络在各个时间步的输出或隐藏状态。它们包含了之前时间步的信息,并在连续的时间步中传递。
    • “tanh”是一种激活函数,用于非线性转换。
  3. 描述整个流程:

    • 开始于时间步t-1,输入 X t − 1 X_{t-1} Xt1和隐藏状态 h t − 2 h_{t-2} ht2被提供给单元A。
    • 在单元A内,进行了乘法、加法和“tanh”激活函数的计算。
    • 输出结果为隐藏状态 h t − 1 h_{t-1} ht1,这个状态同时也是这一时间步的输出,并且会被传递到下一个时间步。
    • 对于时间步t,该过程重复,输入 X t X_t Xt和隐藏状态 h t − 1 h_{t-1} ht1被提供给单元A,输出为 h t h_t ht
    • 同样的流程继续进行,对于时间步t+1,输入为 X t + 1 X_{t+1} Xt+1和隐藏状态 h t h_t ht,输出为 h t + 1 h_{t+1} ht+1

整体而言,这是一个循环神经网络(RNN)的简化表示,用于处理序列数据。每个时间步接收一个输入和前一个时间步的隐藏状态,产生一个输出,并将该输出传递到下一个时间步。

解读3重门

NLP之LSTM原理剖析_第5张图片
上图中,i=input o=output f=forget

这是一个展示长短时记忆(Long Short-Term Memory, LSTM)网络中某一单元的计算过程的图片。

1. 描述图片的主要部分

  • 图片标题:“三重门机制”。
  • 图中给出了几个公式,描述了LSTM中的输入门(i)、遗忘门(f)和输出门(o)的计算,以及记忆细胞的更新方式。
  • 图片下方展示了LSTM单元中数据流的方向。

2. 解释LSTM的工作原理

  • LSTM设计用于解决梯度消失和梯度爆炸的问题,这在传统的RNN中是一个挑战。
  • LSTM通过三个门(输入门、遗忘门和输出门)和一个记忆细胞来工作,从而实现长期记忆。

3. 根据图片内容提供额外的补充和解读

  • 输入门(i): 控制新输入信息的量。计算公式为 i = sigmoid(wt * xt + ut * ht-1 + b)
  • 遗忘门(f): 决定哪些信息从记忆细胞中被抛弃或遗忘。计算公式为 f = sigmoid(wt * xt + ut * ht-1 + b)
  • 输出门(o): 控制从记忆细胞到隐藏状态的输出信息量。计算公式为 o = sigmoid(wt * xt + ut * ht-1 + b)
  • ˜C:当前输入信息的候选值。计算公式为 ˜C = tanh(wt@xt + ht-1@wh + b)
  • Ct: 更新的记忆细胞。计算公式为 Ct = f * Ct-1 + i * ˜C,表示遗忘门选择遗忘的信息和输入门选择的新信息的结合。
  • ht: 当前的隐藏状态。计算公式为 ht = o * tanh(Ct)

这些门的作用使LSTM能够学习和记住长期的依赖关系,从而在各种序列预测任务中取得了成功。

让我们先逐步解读LSTM的计算过程,然后将其与传统RNN进行比较。

1. LSTM的计算过程

a. 输入:

  • x t xt xt:当前时间步的输入。
  • $ht-1$:前一时间步的隐藏状态。
  • C t − 1 Ct-1 Ct1:前一时间步的记忆细胞。

b. 遗忘门(f):
计算哪些先前的记忆需要被保留或遗忘。
f = s i g m o i d ( w t ∗ x t + u t ∗ h t − 1 + b ) f = sigmoid(wt * xt + ut * ht-1 + b) f=sigmoid(wtxt+utht1+b)

c. 输入门(i)记忆候选值(˜C):
决定更新哪些新的记忆。
i = s i g m o i d ( w t ∗ x t + u t ∗ h t − 1 + b ) i = sigmoid(wt * xt + ut * ht-1 + b) i=sigmoid(wtxt+utht1+b)
˜ C = t a n h ( w t @ x t + h t − 1 @ w h + b ) ˜C = tanh(wt@xt + ht-1@wh + b) ˜C=tanh(wt@xt+ht1@wh+b)

d. 更新记忆细胞(Ct):
结合遗忘门的输出和输入门的输出,更新记忆细胞。
C t = f ∗ C t − 1 + i ∗ ˜ C Ct = f * Ct-1 + i * ˜C Ct=fCt1+i˜C

e. 输出门(o):
计算下一个隐藏状态应该是什么。
o = s i g m o i d ( w t ∗ x t + u t ∗ h t − 1 + b ) o = sigmoid(wt * xt + ut * ht-1 + b) o=sigmoid(wtxt+utht1+b)

f. 计算隐藏状态(ht):
h t = o ∗ t a n h ( C t ) ht = o * tanh(Ct) ht=otanh(Ct)

2. LSTM与传统RNN的区别

a. 记忆细胞与隐藏状态:

  • LSTM: 有一个称为“记忆细胞”的附加状态,它可以存储跨多个时间步的信息。
  • RNN: 只有一个隐藏状态。

b. 门机制:

  • LSTM: 使用三个门(输入、输出和遗忘门)来控制信息的流动。
  • RNN: 没有这些门,信息简单地在每个时间步被传递和变换。

c. 长期依赖:

  • LSTM: 由于其门机制和记忆细胞,LSTM可以处理长期依赖,记住信息超过数百个时间步。
  • RNN: 很难处理长期依赖,因为信息在每个时间步都会逐渐丢失或被稀释。

d. 梯度问题:

  • LSTM: 设计来缓解梯度消失和爆炸问题。
  • RNN: 更容易遭受梯度消失或梯度爆炸问题。

总结: 虽然LSTM和RNN都是递归神经网络的变体,但LSTM通过其门机制和记忆细胞设计,使其能够更好地处理长期依赖,而不受梯度消失或梯度爆炸问题的困扰。

NLP之LSTM原理剖析_第6张图片

内部结构:
NLP之LSTM原理剖析_第7张图片

NLP之LSTM原理剖析_第8张图片

你可能感兴趣的:(#,1.,自然语言处理&知识图谱,自然语言处理,lstm,人工智能)