代碼隨想錄算法訓練營|第五十五天|1143.最长公共子序列、1035.不相交的线、53. 最大子序和。刷题心得(c++)

讀題

1143.最长公共子序列

自己看到题目的第一想法

看起來跟最長重複子数組很類似,但是要怎麼去推遞推的狀態沒有想法

看完代码随想录之后的想法

看完之後,大概釐清了整體想法,可以想成說,因為我們要考慮的是不連續的子序列,所以會分成兩種狀態,一個是不相同,不相同的話需要看之前的序列有沒有重複,之前包括兩個方面,縱向與橫向關係,要取最大的,因為這個緣故,在相同的時候,因為之前的數都考慮過縱向與橫向的關係,可以直接從左上角跟重複子序列一樣,求出該值。 至於初始化的部分,在定義下標時,i、j都設定為i - 1 或者說 1 ~ i ,讓後續的遞推公式以及初始化都可以比較簡便。

1035.不相交的线

自己看到题目的第一想法

看到這題,看到卡哥的提示,觀察過後其實就跟最長的公共子序列一樣,如果有一個子序列是共有的,那最長的公共子序列一定是可以連接最多不相交的線,整體的概念是一致的。

53. 最大子序和

看完代码随想录之后的想法

其實整體概念跟連續遞增子序有點像,改為將数組變動 dp[i - 1] + nums[i] 以及 nums[i]的差異,看完程式碼後理解上不會太過於困難。

1143.最长公共子序列 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i][j] 代表 0~ i - 1 的text1 以及 0 ~ j - 1 的text2 最长公共子序列長度為dp[i][j]

  2. 遞推公式

    分成兩種狀態相同與不相同

    不相同的話需要看之前的序列有沒有重複,之前包括兩個方面,縱向與橫向關係,要取最大的

    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

    相同的時候,因為之前的數都考慮過縱向與橫向的關係,可以直接從左上角跟重複子序列一樣

    dp[i][j] = dp[i - 1][j - 1] + 1;

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    最少為0,所以初始化為0

  4. 確定遍歷順序

    因為需要左上角的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector> dp (text1.size() + 1, vector(text2.size() + 1, 0));
        for(int i = 1; i < text1.size() + 1; i++) {
            for(int j = 1; j < text2.size() + 1; j++) {
                if(text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
                else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1035.不相交的线 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i][j] 代表 0~ i - 1 的nums1 以及 0 ~ j - 1 的nums2 最长不相交的线為dp[i][j]

  2. 遞推公式

    分成兩種狀態相同與不相同

    不相同的話需要看之前的序列有沒有重複,之前包括兩個方面,縱向與橫向關係,要取最大的

    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

    相同的時候,因為之前的數都考慮過縱向與橫向的關係,可以直接從左上角跟重複子序列一樣

    dp[i][j] = dp[i - 1][j - 1] + 1;

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    最少為0,所以初始化為0

  4. 確定遍歷順序

    因為需要左上角的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:
    int maxUncrossedLines(vector& nums1, vector& nums2) {
        vector> dp (nums1.size() + 1, vector(nums2.size() + 1, 0));
        for(int i = 1; i < nums1.size() + 1; i++) {
            for(int j = 1; j < nums2.size() + 1; j++) {
                if(nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
                else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
            }
        }
        return dp[nums1.size()][nums2.size()];
    }
};

53. 最大子序和 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i] 代表 i 之前包含i 的number[i] 結尾的最大子序和是多少

  2. 遞推公式

    當前的数加上前面的數比較大還是當前的數比較大,取大的。

    dp[i] = max(dp[i - 1] + nums[i], nums[i])

    if dp [i] > result 更新result

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    將數組初始化為最小值,以及result = nums[0]

  4. 確定遍歷順序

    0 到 i 因為需要前面的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:
    int maxSubArray(vector& nums) {
        vector dp (nums.size() + 1, INT_MIN);
        int result = nums[0];
        dp[0] = nums[0];
        for(int i = 1; i < nums.size(); i++ ) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]);
            if(dp[i] > result) result = dp[i];
        }
        return result;
    }
};

總結

自己实现过程中遇到哪些困难

一開始對於最長公共子序列不太了解,但看完講解後,其實就是在重複子序列的基礎上考慮橫向與縱向的關係,以及最大子序和整體很像最長連續子序列,只是思考上需要進行轉換﹐整體而言,今天題目主要是思路上需要做一些改變,不然很容易繞進去。

今日收获,记录一下自己的学习时长

今天大概學習了2hr,整體是很充實的,尤其理解最長公共子序列,在想法上接續到的二題不相交的線就會非常清晰。

相關資料

● 今日学习的文章链接和视频链接

1143.最长公共子序列

视频讲解:动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列_哔哩哔哩_bilibili

https://programmercarl.com/1143.最长公共子序列.html

1035.不相交的线

视频讲解:动态规划之子序列问题,换汤不换药 | LeetCode:1035.不相交的线_哔哩哔哩_bilibili

https://programmercarl.com/1035.不相交的线.html

53. 最大子序和

视频讲解:看起来复杂,其实是简单动态规划 | LeetCode:53.最大子序和_哔哩哔哩_bilibili

https://programmercarl.com/0053.最大子序和(动态规划).html

你可能感兴趣的:(算法,c++,开发语言,数据结构,动态规划)