- Anaconda插件开发
lyh1344
数据库开发
开发环境准备安装Anaconda或Miniconda,确保conda命令可用。推荐使用Python3.7及以上版本。创建独立的开发环境以避免依赖冲突:condacreate-nplugin_devpython=3.8condaactivateplugin_dev插件结构设计Anaconda插件通常采用Python包的标准结构。核心文件包括__init__.py和setup.py。典型目录结构如下:
- ‘conda‘ 不是内部或外部命令,也不是可运行的程序或批处理文件
THe CHallEnge of THe BrAve
conda
出现'conda'不是内部或外部命令,也不是可运行的程序或批处理文件的错误,通常是因为Conda没有正确添加到系统的环境变量中。以下是解决方法:1.确认Anaconda/Miniconda是否安装成功打开文件资源管理器,检查D:\anaconda3文件夹是否存在。如果存在,检查其中是否包含Scripts和condabin文件夹。如果这些文件夹不存在,可能是安装过程有问题,建议重新安装Minicon
- 基于Python Anaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案
神经网络15044
仿真模型算法机器学习pythoncnnlstm
以下是一个基于PythonAnaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案。内容涵盖数据预处理、模型构建、训练优化、预测可视化和结果分析等核心环节,代码与文字说明共计超过6000字。基于CNN-LSTM的碳交易价格预测系统设计与实现一、项目背景与目标1.1碳交易市场概述碳交易作为应对气候变化的重要市场机制,其价格波动直接影响企业减排决策。准确预测碳价(CarbonEmis
- 2021-01-12
牛奶能压惊Becky
量化经验分享
Wind量化因子回测学习记录将anaconda和wind联动起来,快捷的做法:先在wind终端里面点点点,量化——修复插件——修复Python插件,就不放图了,最终小窗口都是绿色小对勾就好啦。再继续点点点,量化——API接口——Python接口,就出来了WindPy的安装教程。需要找到1.anaconda安装目录下的python.exe2.Wind安装的位置,在电脑自己的cmd里输入如下三个路径即
- anaconda创建python3.7环境_anaconda使用以及创建python3.7+pytorch1.0虚拟环境以及Jupyter notebook初级使用...
weixin_39837124
查看所有已安装的软件包$condalist#packagesinenvironmentatS:\Users\jiangshan\Anaconda3:##NameVersionBuildChannel_ipyw_jlab_nb_ext_conf0.1.0py37_0defaultsalabaster0.7.12py37_0defaultsanaconda2018.12py37_0defaults..
- Anaconda 创建python3.9+pytorch1.10.1+cuda11.3环境
canny_kevin
DeepLearningPythonpythonconda
1.打开AnacondaPowershellPrompt2.创建conda环境condacreate--nameRordAIpython=3.9conda一些命令condainfo--envs:输出中带有【*】号的的就是当前所处的环境condalist:看这个环境下安装的包和版本condainstallnumpyscikit-learn:安装numpysklearn包condaenvremove-
- Miniconda+Jupyter+PyCharm初始环境配置
Miniconda+Jupyter+PyCharm初始环境配置与使用指南一、为什么用Miniconda,而不是Anaconda?二、Miniconda基础环境配置步骤1.下载Miniconda2.安装与配置路径(以Linux/macOS为例)3.切换清华源(加快加载包的速度)三、JupyterNotebooks安装与配置(base环境+kernel切换)推荐安装策略:**把Jupyter安装在ba
- RuntimeError: Unsupported image type, must be 8bit gray or RGB image.
Roc-xb
Pythonpythoncv2opencv
(face)E:\code\运行代码>C:/Users/29847/Anaconda3/envs/face/python.exee:/code/运行代码/face.pyTraceback(mostrecentcalllast):File“e:\code\运行代码\face.py”,line76,insuccess=registrator.register_face(“Mark_Zuckerberg
- Pytorch血泪安装史好吗(GPU版本+cuda12.1+python3.9.13)
宇宙最强袋鼠
pytorchpython人工智能
1.安装cuda首先看下自己电脑是CPU还是GPU,看自己电脑对应的cuda版本看右下角英伟达标识,点击组件,我的cuda版本是12.3,但最后发现安12.1比较好2.安装12.1cuda版本对应的cudnn前两步可以看参考:Pytorch的安装,有点繁琐但是很详细,保姆级教程不信你安装不成功(Cuda+Cudnn+Anaconda+Pytorch)_pytorch安装-CSDN博客3.anaco
- 如何使用YOLOv8对遥感图像中的滑坡-泥石流进行分割 深度学习遥感图像滑坡泥石流分割数据集的训练及应用
计算机C9硕士_算法工程师
YOLO深度学习人工智能
如何使用YOLOv8对遥感图像中的滑坡-泥石流进行分割深度学习遥感图像滑坡泥石流分割数据集的训练及应用文章目录遥感图像滑坡-泥石流分割数据集情况数据集概述类别统计总体统计注意事项✅一、安装CUDA驱动(Linux示例)✅二、安装Anaconda(Linux示例)✅三、创建Python虚拟环境并安装依赖✅四、数据集结构示例(遥感图像滑坡-泥石流分割)✅五、创建data.yaml文件(用于训练)✅六、
- 移动 Conda 环境,从在线环境到离线环境
八奈见会赢的
condapython
Conda被称为Python和R包的包管理器,由Anaconda,Inc.和conda-forge(condaPython包的开源社区)提供。除了管理包,Conda还是一名环境经理。如果您不熟悉Python,环境会创建一个隔离的环境来管理项目中的依赖项。由于包的Python生态系统既广泛又深入,因此Conda的部分工作是安装彼此不冲突的包。设置项目环境并编写和测试代码后,您可能希望将其移动到另一台
- 理解python、anaconda、pytorch以及pycharm之间的关系
幸运小仙
pythonpytorchpycharm
1.Python:编程语言,是基础Python是一种高级的、通用的编程语言。它以其简洁的语法、丰富的库和强大的社区支持而闻名。在数据科学、机器学习和深度学习领域,Python是主要的编程语言。可以使用Python编写代码来处理数据、构建模型、进行实验等。2.Anaconda:Python的发行版,提供便利Anaconda是一个流行的Python发行版,它包含了Python解释器以及许多常用的科学计
- torch-gpu版本 anaconda配置教程
GXYGGYXG
python
教程Pytorch的GPU版本安装,在安装anaconda的前提下安装pytorch_pytorch-gpu-CSDN博客版本对应PyTorch中torch、torchvision、torchaudio、torchtext版本对应关系_torch2.0.1对应的torchvision-CSDN博客cuda下载地址CUDAToolkitArchive|NVIDIADevelopercudacudnn
- 第三课:大白话中的scikit-learn安装
顽强卖力
scikit-learnpython机器学习
史上最欢乐的scikit-learn安装指南:从零开始到成功装逼大家好!这节课我们要干一件大事——安装scikit-learn(机器学习界的瑞士军刀)。别担心,就算你是电脑小白,看完这篇也能轻松搞定!我会手把手教你用pip安装、在Windows和Mac上折腾、以及用Anaconda偷懒大法,最后还会教你如何验证是否安装成功(避免装了个寂寞)。废话不多说,Let’sgo!1.什么是scikit-le
- PySide6、Qt6、开发入门、环境配置、基本调试
_S_Q
QtQt学习之路软件调试qtpython
文章目录安装conda和pycharm-community说明1.配置环境,QtPySide6开发环境1.1.新建一个项目1.2.设置环境2.运行程序3.参考:4.代码调试5.IDE自带Git安装conda和pycharm-communityAnaconda3-2024.02-1-Windows-x86_64.exepycharm-community-2024.1.3.exe说明Anaconda包
- pandas_datareader 库下载安装
还不秃顶的计科生
深度学习pandas
基本含义:pandas_datareader是一个用于从多种远程数据源(如金融、经济和在线数据库)获取数据的Python库。它特别方便与pandas数据框架结合使用,将获取到的外部数据直接加载为pandasDataFrame,以便于进一步的数据处理和分析。这个库是专门设计来简化从网络数据源获取时间序列、经济指标、股票价格等数据的过程。第一部分:安装condainstall-canacondapan
- Anaconda安装与使用,新手避免踩坑
小泥人Hyper
python开发语言
1.安装Anaconda1.1进入官网下载,有多种版本可以选择,挑最适合的即可官网地址:https://repo.anaconda.com/archive/1.2下载好后放入指定文件夹,或者跳转到对应的文件夹,执行下面的命令1.3跳转到该项目后执行bash命令进行安装bashAnaconda3-2024.02-1-Linux-x86_64.sh然后一直回车或者yes即可,直到出现Thankyouf
- WSL2下Ubuntu20.04环境配置(Anaconda、Pytorch、CUDA安装)与项目导入
进军大模型
pytorch人工智能pythonubuntu
目录WSL2+Ubuntu20.04安装迁移WSL2配置WSL2访问Windows上的代理linux安装CondaCUDA安装Pytorch安装项目导入与运行WSL2+Ubuntu20.04安装1.搜索WindowsPowerShell,用管理员权限打开,执行wsl--install指令下载wsl。2.在MicrosoftStore中下载Ubuntu20.04。3.下载完Ubuntu后直接打开会出
- Rsync实操
KellenKellenHao
excel
Rsync实操一.rsync命令 #类似于cp [root@user2~]#
[email protected]:/root
[email protected]'spassword: [root@user1~]#ls anaconda-ks.cfgceph-release-1-1.el7.noarch.rpminfo.sh二、使用rsync备份push方式服务器:
- Ubuntu20.04LTS 安装 mmdetection 全记录
Ubuntu20.04LTS安装mmdetection全记录环境需求准备工作anaconda安装gcc/g++安装安装nvidia显卡驱动安装CUDA正式安装mmdetection创建一个conda虚拟环境安装PyTorch和Torchvision安装mmcvmmdetection安装后记环境需求Requirements:·Linux(Windowsisnotofficiallysupported
- 基于CNN卷积神经网络识别汉字合集-视频介绍下自取
no_work
深度学习cnn人工智能神经网络
内容包括:含ShuffleNet等多个模型的手写中文汉字识别摄像头版109含ShuffleNet等多个模型的手写中文汉字识别摄像头版_哔哩哔哩_bilibili本代码用的python语言,pytorch深度学习框架运行,环境的安装可以参考博客:深度学习环境安装教程-anaconda-python-pytorch_动手学习深度学习的环境安装-CSDN博客代码总共分成三个部分,01py文件是划分数据集
- Python版本管理器-Miniconda
華小灼
技术pythonminiconda
随着Python的版本更新,我们在开发Python软件的时候,对Python的版本选择越来越重要,但同时又要兼容已经开发好了的Python软件,因此选择一款合适的Python版本管理器对提高开发效率也越来越重要,今天就推荐一款Python的版本工具—Miniconda,从名字上看有mini,所以他是一款简化版,而完整版叫Anaconda,他们俩个都是conda包管理器,当然也有很大的不同,接下
- Docker+深度学习镜像(预装anaconda+ssh+pytorch+时区设置)
qq_43288818
深度学习docker
介绍:开箱即用的深度学习的镜像,基于ubuntu20.04版本构建。设置好了一个py37的conda环境,该环境预装好了pytorch。●时区设置为中国地区●预装了ananconda3(路径:opt/anaconda3)●预装了Pytorch(python3.7)(环境名为py37)注意:第一次进入容器后需要执行一下condainitbash命令并重启。dockerfileFROMnvidia/c
- 用 Visual Studio Code 打造超越 PyCharm 的开发神器
目录一、前言二、让VSCode的终端识别Anaconda三、VSCode的jupyter插件使用四、配置git的免密访问五、安装一些好用的扩展(extensions)一、前言VisualStudioCode是一款开源的IDE开发工具,以下简称VSCode,它是基于ElectronJS开发、具有web技术栈的开发优势,比如界面开发效率高、设计美观、生态开放等,因此产生了大量免费的插件,就python
- OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
师范大学生
深度学习深度学习
解法解决这个问题的关键,就是把当前环境内的libiomp5md.dll删除或者重命名。1.先去anaconda目录下找到自己当前的环境。2.envs/环境名称/Library/bin里,会发现有个libiomp5md.dll将其删除或者改名都可以。这里我为了留着该文件,就只改了名。注意红框里面的pytorch是我的环境名称。是在plt相关代码的调用中出现的,修改好之后再运行一下代码,不会再报这个错
- AI大模型从0到1记录学习numpy pandas day24
Gsen2819
算法大模型人工智能人工智能学习numpy数据结构算法聚类数据挖掘
第1章环境搭建1.1Anaconda1.1.1什么是AnacondaAnaconda官网地址:https://www.anaconda.com/简单来说,Anaconda=Python+包和环境管理器(Conda)+常用库+集成工具。它适合那些需要快速搭建数据科学或机器学习开发环境的用户。Anaconda和Python相当于是汽车和发动机的关系,安装Anaconda后,就像买了一台车,无需自己去安
- VSCode部署Pytorch机器学习框架使用Anaconda(Window版)
JjWang__HUST
机器学习vscodepytorch
目录1.配置Anaconda1.1下载安装包1.Anaconda官网下载2安装Anaconda1.2创建虚拟环境1.3常用命令Conda命令调试和日常维护1.4可能遇到的问题执行上述步骤后虚拟环境仍在C盘2.配置cuda2.1查看显卡支持的cuda版本2.2下载对应cuda版本2.3下载对应的pytorch可能出现的问题1.使用官方PyTorch渠道2.检查可用的cudatoolkit版本3.使用
- windows本地部署Deepseek-R1的详细教程
坚毅不拔的柠檬柠檬
AI新纪元windowsDeepseekAIai人工智能
1.安装Python环境1.1安装Anaconda(Python包管理)访问Anaconda官网,下载Windows64位安装包。双击安装包,勾选“AddAnacondatoPATH”(将Anaconda加入环境变量),按默认选项完成安装。1.2创建虚拟环境打开AnacondaPrompt(以管理员身份运行):condacreate-ndeepseek-guipython=3.9#创建名为deep
- 【补充笔记】文字流程图:Windows 系统 Python 多级环境管理方案
AITechLab
Anaconda运维流程图windowspython人工智能运维
【深度探索】Windows下Python多版本虚拟环境管理与隔离实战:支持Anaconda、Poetry、Pipenv、venv、uv、Hatch、PyCharm、VSCode全工具链方案-CSDN博客WindowsPython环境管理终极对比:极简方案VS传统方案(仅需2个软件实现全流程自动化)-CSDN博客1.1项目目标流程在Windows系统上统一管理不同Python版本环境┌───────
- Anaconda 全环境工具链 路径树管理 和 环境创建 指南(Poetry、Pipenv、venv、uv、Hatch)
AITechLab
AnacondaPyCharm运维windowspython开发语言人工智能uv
【深度探索】Windows下Python多版本虚拟环境管理与隔离实战:支持Anaconda、Poetry、Pipenv、venv、uv、Hatch、PyCharm、VSCode全工具链方案-CSDN博客WindowsPython环境管理终极对比:极简方案VS传统方案(仅需2个软件实现全流程自动化)-CSDN博客【补充笔记】文字流程图:Windows系统Python多级环境管理方案-CSDN博客Wi
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,