⭐ 作者:小胡_不糊涂
作者主页:小胡_不糊涂的个人主页
收录专栏:浅谈数据结构
持续更文,关注博主少走弯路,谢谢大家支持
顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( lon2(N)),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中:
插入元素:根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
搜索元素:对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功
该方式即为哈希(散列)方法, 哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(HashTable)(或者称散列表)
例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快。但是按照上述哈希方式,向集合中插入元素44,就会产生一个问题:hash(44)=44%10=4,而上面的4下标里已经有了一个元素,这就会产生冲突。
对于两个数据元素的关键字Ki和Kj (i != j),有 Ki!=Kj ,但有:Hash(Ki) == Hash(Kj),即:不同关键字通过相同哈希函数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。
如何避免哈希冲突呢?
首先,我们需要明确一点,由于我们哈希表底层数组的容量往往是小于实际要存储的关键字的数量的,这就导致一个问题,冲突的发生是必然的,但我们能做的应该是尽量的降低冲突率。
引起哈希冲突的一个原因可能是:哈希函数设计不够合理。
哈希函数设计原则:
常见哈希函数:
例如:
假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法。
数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均
匀的情况。
注意: 哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突。
负载因子和冲突率的关系粗略演示:
当冲突率达到一个无法忍受的程度时,我们需要通过降低负载因子来变相的降低冲突率。
已知哈希表中已有的关键字个数是不可变的,那我们能调整的就只有哈希表中的数组的大小
解决哈希冲突两种常见的方法是:闭散列和开散列
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个”空位置中去。那如何寻找下一个空位置呢?
插入
因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。
开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,**每一个子集合称为一个桶,**各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。
开散列,可以认为是把一个在大集合中的搜索问题转化为在小集合中做搜索了。
哈希桶的实现:
ublic class HashBuck {
static class Node {
public int key;
public int val;
public Node next;
public Node(int key, int val) {
this.key = key;
this.val = val;
}
}
public Node[] array;
public int usedSize;//存放了多少个数据
public static final float DEFAULT_LOAD_FACTOR = 0.75f;//载荷因子
public HashBuck() {
array = new Node[10];
}
public void put(int key,int val) {
int index = key % array.length;
//遍历index下标的链表是否存在key:存在更新value;不存在则插入数据
Node cur = array[index];
while (cur != null) {
if(cur.key == key) {
//更新value
cur.val = val;
return;
}
cur = cur.next;
}
//cur == null 链表遍历完成 没有找到这个key
Node node = new Node(key,val);
node.next = array[index];
array[index] = node;
usedSize++;//8
if(doLoadFactor() > DEFAULT_LOAD_FACTOR) {
//扩容!!
//array = Arrays.copyOf(array,2*array.length);error
resize();
}
}
private void resize() {
Node[] newArray = new Node[2*array.length];
//遍历原来的数组
for (int i = 0; i < array.length; i++) {
Node cur = array[i];
//遍历每个数组元素(链表)
while (cur != null) {
Node tmp = cur.next;
int newIndex = cur.key % newArray.length;//新的数组下标
//采用头插法 插入到新数组的 newIndex下标
cur.next = newArray[newIndex];
newArray[newIndex] = cur;
cur = tmp;
}
}
array = newArray;
}
private float doLoadFactor() {
return usedSize*1.0f / array.length;
}
public int get(int key) {
int index = key % array.length;
Node cur = array[index];
while (cur != null) {
if(cur.key == key) {
return cur.val;
}
cur = cur.next;
}
return -1;
}
}
虽然哈希表一直在和冲突做斗争,但在实际使用过程中,我们认为哈希表的冲突率是不高的,冲突个数是可控的,也就是每个桶中的链表的长度是一个常数,所以,通常意义下,我们认为哈希表的插入/删除/查找时间复杂度是O(1) 。
小结: