错误处理
在程序运行的过程中,如果发生了错误,可以事先约定返回一个错误代码,这样,就可以知道是否有错,以及出错的原因。在操作系统提供的调用中,返回错误码非常常见。比如打开文件的函数open(),成功时返回文件描述符(就是一个整数),出错时返回-1
。
用错误码来表示是否出错十分不便,因为函数本身应该返回的正常结果和错误码混在一起,造成调用者必须用大量的代码来判断是否出错.
try
一旦出错,还要一级一级上报,直到某个函数可以处理该错误(比如,给用户输出一个错误信息)。
所以高级语言通常都内置了一套try...except...finally...
的错误处理机制,Python也不例外。
用一个例子来看看try
的机制:
try:
print('try...')
r = 10 / 0
print('result:', r)
except ZeroDivisionError as e:
print('except:', e)
finally:
print('finally...')
print('END')
当我们认为某些代码可能会出错时,就可以用try
来运行这段代码,如果执行出错,则后续代码不会继续执行,而是直接跳转至错误处理代码,即except
语句块,执行完except
后,如果有finally
语句块,则执行finally
语句块,至此,执行完毕。
上面的代码在计算10 / 0
时会产生一个除法运算错误:
try...
except: division by zero
finally...
END
从输出可以看到,当错误发生时,后续语句print('result:', r)
不会被执行,except
由于捕获到ZeroDivisionError
,因此被执行。最后,finally
语句被执行。然后,程序继续按照流程往下走。
此外,如果没有错误发生,可以在except
语句块后面加一个else
,当没有错误发生时,会自动执行else
语句:
try:
print('try...')
r = 10 / int('2')
print('result:', r)
except ValueError as e:
print('ValueError:', e)
except ZeroDivisionError as e:
print('ZeroDivisionError:', e)
else:
print('no error!')
finally:
print('finally...')
print('END')
Python的错误其实也是class,所有的错误类型都继承自BaseException
,所以在使用except
时需要注意的是,它不但捕获该类型的错误,还把其子类也“一网打尽”:
try:
foo()
except ValueError as e:
print('ValueError')
except UnicodeError as e:
print('UnicodeError')
第二个except永远也捕获不到UnicodeError,因为UnicodeError是ValueError的子类,如果有,也被第一个except给捕获了。
调用栈
如果错误没有被捕获,它就会一直往上抛,最后被Python解释器捕获,打印一个错误信息,然后程序退出。来看看err.py
:
# err.py:
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
bar('0')
main()
#执行,结果如下
$ python3 err.py
Traceback (most recent call last):
File "err.py", line 11, in
main()
File "err.py", line 9, in main
bar('0')
File "err.py", line 6, in bar
return foo(s) * 2
File "err.py", line 3, in foo
return 10 / int(s)
ZeroDivisionError: division by zero
出错并不可怕,可怕的是不知道哪里出错了。解读错误信息是定位错误的关键。我们从上往下可以看到整个错误的调用函数链:
Traceback (most recent call last):#错误信息第1行,告诉我们这是错误的跟踪信息。
第2~3行:
File "err.py", line 11, in
main()
调用main()
出错了,在代码文件err.py的第11行代码,但原因是第9行:
File "err.py", line 9, in main
bar('0')
调用bar('0')
出错了,在代码文件err.py的第9行代码,但原因是第6行:
File "err.py", line 6, in bar
return foo(s) * 2
原因是return foo(s) * 2
这个语句出错了,但这还不是最终原因,继续往下看:
File "err.py", line 3, in foo
return 10 / int(s)
原因是return 10 / int(s)
这个语句出错了,这是错误产生的源头,因为下面打印了:
ZeroDivisionError: integer division or modulo by zero
根据错误类型ZeroDivisionError
,我们判断,int(s)
本身并没有出错,但是int(s)
返回0,在计算10 / 0
时出错,至此,找到错误源头。
记录错误
如果不捕获错误,自然可以让Python解释器来打印出错误堆栈,但程序也被结束了。既然我们能捕获错误,就可以把错误堆栈打印出来,然后分析错误原因,同时,让程序继续执行下去。
Python内置的logging
模块可以非常容易地记录错误信息:
# err_logging.py
import logging
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
try:
bar('0')
except Exception as e:
logging.exception(e)
main()
print('END')
同样是出错,但程序打印完错误信息后会继续执行,并正常退出:
$ python3 err_logging.py
ERROR:root:division by zero
Traceback (most recent call last):
File "err_logging.py", line 13, in main
bar('0')
File "err_logging.py", line 9, in bar
return foo(s) * 2
File "err_logging.py", line 6, in foo
return 10 / int(s)
ZeroDivisionError: division by zero
END
抛出错误
略
调试
程序能一次写完并正常运行的概率很小,基本不超过1%。总会有各种各样的bug需要修正。有的bug很简单,看看错误信息就知道,有的bug很复杂,我们需要知道出错时,哪些变量的值是正确的,哪些变量的值是错误的,因此,需要一整套调试程序的手段来修复bug。
第一种方法简单直接粗暴有效,就是用print()
把可能有问题的变量打印出来看看:
def foo(s):
n = int(s)
print('>>> n = %d' % n)
return 10 / n
def main():
foo('0')
main()
执行后在输出中查找打印的变量值:
$ python err.py
>>> n = 0
Traceback (most recent call last):
...
ZeroDivisionError: integer division or modulo by zero
用print()
最大的坏处是将来还得删掉它,想想程序里到处都是print()
,运行结果也会包含很多垃圾信息。所以,我们又有第二种方法。
断言
凡是用print()
来辅助查看的地方,都可以用断言(assert)来替代.
logging / pdb / pdb.set_trace() / IDE
单元测试
如果你听说过“测试驱动开发”(TDD:Test-Driven Development),单元测试就不陌生。
单元测试是用来对一个模块、一个函数或者一个类来进行正确性检验的测试工作。
mydict.py
代码如下:
class Dict(dict):
def __init__(self, **kw):
super().__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Dict' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
为了编写单元测试,我们需要引入Python自带的unittest
模块,编写mydict_test.py
如下:
import unittest
from mydict import Dict
class TestDict(unittest.TestCase):
def test_init(self):
d = Dict(a=1, b='test')
self.assertEqual(d.a, 1)
self.assertEqual(d.b, 'test')
self.assertTrue(isinstance(d, dict))
def test_key(self):
d = Dict()
d['key'] = 'value'
self.assertEqual(d.key, 'value')
def test_attr(self):
d = Dict()
d.key = 'value'
self.assertTrue('key' in d)
self.assertEqual(d['key'], 'value')
def test_keyerror(self):
d = Dict()
with self.assertRaises(KeyError):
value = d['empty']
def test_attrerror(self):
d = Dict()
with self.assertRaises(AttributeError):
value = d.empty
编写单元测试时,我们需要编写一个测试类,从unittest.TestCase
继承。
以test
开头的方法就是测试方法,不以test
开头的方法不被认为是测试方法,测试的时候不会被执行。
对每一类测试都需要编写一个test_xxx()
方法。由于unittest.TestCase
提供了很多内置的条件判断,我们只需要调用这些方法就可以断言输出是否是我们所期望的。最常用的断言就是assertEqual()
:
self.assertEqual(abs(-1), 1) # 断言函数返回的结果与1相等
运行单元测试
一旦编写好单元测试,我们就可以运行单元测试。最简单的运行方式是在mydict_test.py
的最后加上两行代码:
if __name__ == '__main__':
unittest.main()
这样就可以把mydict_test.py
当做正常的python脚本运行:
$ python mydict_test.py
setUp与tearDown
可以在单元测试中编写两个特殊的setUp()
和tearDown()
方法。这两个方法会分别在每调用一个测试方法的前后分别被执行。
setUp()
和tearDown()
方法有什么用呢?设想你的测试需要启动一个数据库,这时,就可以在setUp()
方法中连接数据库,在tearDown()
方法中关闭数据库,这样,不必在每个测试方法中重复相同的代码:
class TestDict(unittest.TestCase):
def setUp(self):
print('setUp...')
def tearDown(self):
print('tearDown...')
可以再次运行测试看看每个测试方法调用前后是否会打印出setUp...
和tearDown...
。
# mydict2.py
class Dict(dict):
'''
Simple dict but also support access as x.y style.
>>> d1 = Dict()
>>> d1['x'] = 100
>>> d1.x
100
>>> d1.y = 200
>>> d1['y']
200
>>> d2 = Dict(a=1, b=2, c='3')
>>> d2.c
'3'
>>> d2['empty']
Traceback (most recent call last):
...
KeyError: 'empty'
>>> d2.empty
Traceback (most recent call last):
...
AttributeError: 'Dict' object has no attribute 'empty'
'''
def __init__(self, **kw):
super(Dict, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Dict' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
if __name__=='__main__':
import doctest
doctest.testmod()
什么输出也没有。这说明我们编写的doctest运行都是正确的。