数据预处理(超详细)

import pandas as pd
import numpy as np

【例5-1】使用read_csv函数读取CSV文件。

df1 = pd.read_csv("sunspots.csv")
 #读取CSV文件到DataFrame中
print(df1.sample(5))

df2 = pd.read_table("sunspots.csv",sep = ",")
 #使用read_table,并指定分隔符
print("------------------")
print(df2.sample(5))
df3 = pd.read_csv("sunspots.csv",names = ["a","b"])
 #文件不包含表头行,允许自动分配默认列名,也可以指定列名
print("------------------")
print(df3.sample(5))
     year  counts
1    1701    11.0
262  1962    37.5
35   1735    34.0
66   1766    11.4
72   1772    66.5
------------------
     year  counts
216  1916    57.1
43   1743    16.0
196  1896    41.8
7    1707    20.0
212  1912     3.6
------------------
        a       b
269  1968   105.9
60   1759      54
33   1732      11
0    year  counts
75   1774    30.6

【例5-2】读取excel文件。

xlsx = "data_test.xlsx"
df1 = pd.read_excel(xlsx,"Sheet1")
print(df1)
#也可以直接利用: 
df2 =  pd.read_excel("data_test.xlsx","Sheet1")
print("-------------------------------")
print(df2)
   00101  长裤  黑色   89
0   1123  上衣  红色  129
1   1010  鞋子  蓝色  150
2    100  内衣  灰色  100
-------------------------------
   00101  长裤  黑色   89
0   1123  上衣  红色  129
1   1010  鞋子  蓝色  150
2    100  内衣  灰色  100

【例5-3】merge的默认合并数据。

price = pd.DataFrame({'fruit':['apple','grape','orange','orange'],
'price':[8,7,9,11]})
amount = pd.DataFrame({'fruit':['apple','grape','orange'],'amout':[5,11,8]})
display(price,amount,pd.merge(price,amount))

fruit price
0 apple 8
1 grape 7
2 orange 9
3 orange 11
fruit amout
0 apple 5
1 grape 11
2 orange 8
fruit price amout
0 apple 8 5
1 grape 7 11
2 orange 9 8
3 orange 11 8

【例5-4】指定合并时的列名。

display(pd.merge(price,amount,left_on = 'fruit',right_on = 'fruit'))
fruit price amout
0 apple 8 5
1 grape 7 11
2 orange 9 8
3 orange 11 8

【例5-5】左连接。

display(pd.merge(price,amount,how = 'left'))
fruit price amout
0 apple 8 5
1 grape 7 11
2 orange 9 8
3 orange 11 8

【例5-6】右连接。

display(pd.merge(price,amount,how = 'right'))
fruit price amout
0 apple 8 5
1 grape 7 11
2 orange 9 8
3 orange 11 8

【例5-7】merge通过多个键合并。

left = pd.DataFrame({'key1':['one','one','two'],'key2':['a','b','a'],'value1':range(3)})
right = pd.DataFrame({'key1':['one','one','two','two'],'key2':['a','a','a','b'],'value2':range(4)})
display(left,right,pd.merge(left,right,on = ['key1','key2'],how = 'left'))

key1 key2 value1
0 one a 0
1 one b 1
2 two a 2
key1 key2 value2
0 one a 0
1 one a 1
2 two a 2
3 two b 3
key1 key2 value1 value2
0 one a 0 0.0
1 one a 0 1.0
2 one b 1 NaN
3 two a 2 2.0

【例5-8】merge函数中参数suffixes的应用。

print(pd.merge(left,right,on = 'key1'))
print(pd.merge(left,right,on = 'key1',suffixes = ('_left','_right')))

  key1 key2_x  value1 key2_y  value2
0  one      a       0      a       0
1  one      a       0      a       1
2  one      b       1      a       0
3  one      b       1      a       1
4  two      a       2      a       2
5  two      a       2      b       3
  key1 key2_left  value1 key2_right  value2
0  one         a       0          a       0
1  one         a       0          a       1
2  one         b       1          a       0
3  one         b       1          a       1
4  two         a       2          a       2
5  two         a       2          b       3

【例5-9】两个Series的数据连接。

s1 = pd.Series([0,1],index = ['a','b'])
s2 = pd.Series([2,3,4],index = ['a','d','e'])
s3 = pd.Series([5,6],index = ['f','g'])
print(pd.concat([s1,s2,s3]))  #Series行合并

a    0
b    1
a    2
d    3
e    4
f    5
g    6
dtype: int64

【例5-10】两个DataFrame的数据连接。

data1 = pd.DataFrame(np.arange(6).reshape(2,3),columns = list('abc'))
data2 = pd.DataFrame(np.arange(20,26).reshape(2,3),columns = list('ayz'))
data = pd.concat([data1,data2],axis = 0,sort=False)
display(data1,data2,data)
a b c
0 0 1 2
1 3 4 5
a y z
0 20 21 22
1 23 24 25
a b c y z
0 0 1.0 2.0 NaN NaN
1 3 4.0 5.0 NaN NaN
0 20 NaN NaN 21.0 22.0
1 23 NaN NaN 24.0 25.0

【例5-11】指定索引顺序。

s1 = pd.Series([0,1],index = ['a','b'])
s2 = pd.Series([2,3,4],index = ['a','d','e'])
s3 = pd.Series([5,6],index = ['f','g'])
s4 = pd.concat([s1*5,s3],sort=False)
s5 = pd.concat([s1,s4],axis = 1,sort=False)
s6 = pd.concat([s1,s4],axis = 1,join = 'inner',sort=False)
s7 = pd.concat([s1,s4],axis = 1,join = 'inner',join_axes = [['b','a']],sort=False)
display(s4,s5,s6,s7)

数据预处理(超详细)_第1张图片

a 0
b 5
f 5
g 6
dtype: int64

0 1
a 0.0 0
b 1.0 5
f NaN 5
g NaN 6
0 1
a 0 0
b 1 5
0 1
b 1 5
a 0 0

【例5-12】使用combine_first合并。

s6.combine_first(s5)
0 1
a 0.0 0.0
b 1.0 5.0
f NaN 5.0
g NaN 6.0

【例5-13】利用isnull检测缺失值。

import numpy as np
import pandas as pd
string_data = pd.Series(['aardvark', 'artichoke', np.nan, 'avocado'])
print(string_data)
string_data.isnull()

0 aardvark
1 artichoke
2 NaN
3 avocado
dtype: object

0 False
1 False
2 True
3 False
dtype: bool

【例5-14】None值也会被当做NA处理。

string_data = pd.Series(['aardvark', 'artichoke',None, 'avocado'])
string_data.isnull()

0    False
1    False
2     True
3    False
dtype: bool

【例5-15】利用isnull().sum()统计缺失值。

df = pd.DataFrame(np.arange(12).reshape(3,4),columns = ['A','B','C','D'])
df.iloc[2,:] = np.nan
df[3] = np.nan
print(df)
df.isnull().sum()

     A    B    C    D   3
0  0.0  1.0  2.0  3.0 NaN
1  4.0  5.0  6.0  7.0 NaN
2  NaN  NaN  NaN  NaN NaN





A    1
B    1
C    1
D    1
3    3
dtype: int64

【例5-16】用info方法查看DataFrame的缺失值。

df.info()

RangeIndex: 3 entries, 0 to 2
Data columns (total 5 columns):
A    2 non-null float64
B    2 non-null float64
C    2 non-null float64
D    2 non-null float64
3    0 non-null float64
dtypes: float64(5)
memory usage: 248.0 bytes

【例5-17】Series的dropna用法。

from numpy import nan as NA
data = pd.Series([1, NA, 3.5, NA, 7])
print(data)
print(data.dropna())

0    1.0
1    NaN
2    3.5
3    NaN
4    7.0
dtype: float64
0    1.0
2    3.5
4    7.0
dtype: float64

【例5-18】布尔型索引选择过滤非缺失值。

not_null = data.notnull()
print(not_null)
print(data[not_null])

0 True
1 False
2 True
3 False
4 True
dtype: bool
0 1.0
2 3.5
4 7.0
dtype: float64

【例5-19】DataFrame对象的dropna默认参数使用。

from numpy import nan as NA
data = pd.DataFrame([[1., 5.5, 3.], [1., NA, NA],[NA, NA, NA], 
[NA, 5.5, 3.]])
print(data)
cleaned = data.dropna()
print('删除缺失值后的:\n',cleaned)

     0    1    2
0  1.0  5.5  3.0
1  1.0  NaN  NaN
2  NaN  NaN  NaN
3  NaN  5.5  3.0
删除缺失值后的:
      0    1    2
0  1.0  5.5  3.0

【例5-20】传入参数all。

data = pd.DataFrame([[1., 5.5, 3.], [1., NA, NA],[NA, NA, NA], 
[NA, 5.5, 3.]])
print(data)
data.dropna(how='all')

     0    1    2
0  1.0  5.5  3.0
1  1.0  NaN  NaN
2  NaN  NaN  NaN
3  NaN  5.5  3.0
0 1 2
0 1.0 5.5 3.0
1 1.0 NaN NaN
3 NaN 5.5 3.0

【例5-21】dropna中的axis参数应用。

df = pd.DataFrame([[1., 5.5, NA], [1., NA, NA],[NA, NA, NA], [NA, 5.5, NA]])
print(df)
df.dropna(axis = 1, how = 'all')

     0    1   2
0  1.0  5.5 NaN
1  1.0  NaN NaN
2  NaN  NaN NaN
3  NaN  5.5 NaN
0 1
0 1.0 5.5
1 1.0 NaN
2 NaN NaN
3 NaN 5.5

【例5-22】dropna中的thresh参数应用。

df = pd.DataFrame(np.random.randn(7, 3))
df.iloc[:4, 1] = NA
df.iloc[:2, 2] = NA
print(df)
df.dropna(thresh=2)

          0         1         2
0 -0.506363       NaN       NaN
1  0.109888       NaN       NaN
2 -1.102190       NaN  0.399151
3  0.757800       NaN  1.170835
4  0.350187 -0.315094 -2.319175
5  0.056101  0.256769  0.438723
6 -0.128135 -0.141123 -0.945234
0 1 2
2 -1.102190 NaN 0.399151
3 0.757800 NaN 1.170835
4 0.350187 -0.315094 -2.319175
5 0.056101 0.256769 0.438723
6 -0.128135 -0.141123 -0.945234

【例5-23】通过字典形式填充缺失值。

df = pd.DataFrame(np.random.randn(5,3))
df.loc[:3,1] = NA
df.loc[:2,2] = NA
print(df)
df.fillna({1:0.88,2:0.66})

          0         1         2
0 -0.889385       NaN       NaN
1  0.672471       NaN       NaN
2  1.515747       NaN       NaN
3  0.000104       NaN  0.212531
4 -1.993694  1.385779 -0.870010
0 1 2
0 -0.889385 0.880000 0.660000
1 0.672471 0.880000 0.660000
2 1.515747 0.880000 0.660000
3 0.000104 0.880000 0.212531
4 -1.993694 1.385779 -0.870010

【例5-24】fillna中method的应用。

df = pd.DataFrame(np.random.randn(6, 3))
df.iloc[2:, 1] = NA
df.iloc[4:, 2] = NA
print(df)
df.fillna(method = 'ffill')

          0         1         2
0  0.756464  0.443256 -0.658759
1  0.919615  0.492780  0.993361
2  1.362813       NaN -0.515228
3 -1.114843       NaN -0.622650
4  0.496363       NaN       NaN
5  0.647327       NaN       NaN
0 1 2
0 0.756464 0.443256 -0.658759
1 0.919615 0.492780 0.993361
2 1.362813 0.492780 -0.515228
3 -1.114843 0.492780 -0.622650
4 0.496363 0.492780 -0.622650
5 0.647327 0.492780 -0.622650

【例5-25】用Series的均值填充。

series= pd.Series([1., NA, 3.5, NA, 7])
series.fillna(data.mean())

0    1.0
1    5.5
2    3.5
3    NaN
4    7.0
dtype: float64

【例5-26】DataFrame中用均值填充。

df = pd.DataFrame(np.random.randn(4, 3))
df.iloc[2:, 1] = NA
df.iloc[3:, 2] = NA
print(df)
df[1] = df[1].fillna(df[1].mean())
print(df)

          0         1         2
0  0.209804 -0.308095  1.773856
1 -1.021306  2.082047 -0.396020
2  0.835592       NaN -1.363282
3 -1.253210       NaN       NaN
          0         1         2
0  0.209804 -0.308095  1.773856
1 -1.021306  2.082047 -0.396020
2  0.835592  0.886976 -1.363282
3 -1.253210  0.886976       NaN

【例5-27】判断DataFrame中的重复数据。

data = pd.DataFrame({ 'k1':['one','two'] * 3 + ['two'],'k2':[1, 1, 2, 3, 1, 4, 4] ,'k3':[1,1,5,2,1, 4, 4] })
print(data)
data.duplicated()

    k1  k2  k3
0  one   1   1
1  two   1   1
2  one   2   5
3  two   3   2
4  one   1   1
5  two   4   4
6  two   4   4




0    False
1    False
2    False
3    False
4     True
5    False
6     True
dtype: bool

【例5-28】每行各个字段都相同时去重。

data.drop_duplicates()
k1 k2 k3
0 one 1 1
1 two 1 1
2 one 2 5
3 two 3 2
5 two 4 4

【例5-29】指定部分列重复时去重。

data.drop_duplicates(['k2','k3'])
k1 k2 k3
0 one 1 1
2 one 2 5
3 two 3 2
5 two 4 4

【例5-30】去重时保留最后出现的记录。

data.drop_duplicates(['k2','k3'],keep = 'last')
k1 k2 k3
2 one 2 5
3 two 3 2
4 one 1 1
6 two 4 4

【例5-31】利用散点图检测异常值。

import matplotlib.pyplot as plot
wdf = pd.DataFrame(np.arange(20),columns = ['W'])
wdf['Y'] = wdf['W']*1.5+2
wdf.iloc[3,1] = 128
wdf.iloc[18,1] = 150
wdf.plot(kind = 'scatter',x = 'W',y = 'Y')


【例5-32】利用箱线图分析异常值。

import matplotlib.pyplot as plt
plt.boxplot(wdf['Y'].values,notch = True)


{'whiskers': [,
  ],
 'caps': [,
  ],
 'boxes': [],
 'medians': [],
 'fliers': [],
 'means': []}

【例5-33】利用3σ法则检测异常值。

def outRange(S):
    blidx = (S.mean()-3*S.std()>S)|(S.mean()+3*S.std()<S)
    idx = np.arange(S.shape[0])[blidx]
    outRange = S.iloc[idx]
    return outRange
outier = outRange(wdf['Y'])
outier

18    150.0
Name: Y, dtype: float64

【例5-34】replace替换数据值。

data = {'姓名':['李红','小明','马芳','国志'],'性别':['0','1','0','1'],
'籍贯':['北京','甘肃','','上海']}
df = pd.DataFrame(data)
df = df.replace('','不详')
print(df)

姓名 性别 籍贯
0 李红 0 北京
1 小明 1 甘肃
2 马芳 0 不详
3 国志 1 上海

【例5-35】replace传入列表实现多值替换。

df = df.replace(['不详','甘肃'],['兰州','兰州'])
print(df)

   姓名 性别  籍贯
0  李红  0  北京
1  小明  1  兰州
2  马芳  0  兰州
3  国志  1  上海

【例5-36】 replace传入字典实现多值替换

df = df.replace({'1':'男','0':'女'})
print(df)

   姓名 性别  籍贯
0  李红  女  北京
1  小明  男  兰州
2  马芳  女  兰州
3  国志  男  上海

【例5-37】map方法映射数据。

data = {'姓名':['李红','小明','马芳','国志'],'性别':['0','1','0','1'],
'籍贯':['北京','兰州','兰州','上海']}
df = pd.DataFrame(data)
df['成绩'] = [58,86,91,78]
print(df)
def grade(x):
    if x>=90:
        return '优'
    elif 70<=x<90:
        return '良'
    elif 60<=x<70:
        return '中'
    else:
        return '差'
df['等级'] = df['成绩'].map(grade)
print("-----------------------------------")
print(df)

   姓名 性别  籍贯  成绩
0  李红  0  北京  58
1  小明  1  兰州  86
2  马芳  0  兰州  91
3  国志  1  上海  78
-----------------------------------
   姓名 性别  籍贯  成绩 等级
0  李红  0  北京  58  差
1  小明  1  兰州  86  良
2  马芳  0  兰州  91  优
3  国志  1  上海  78  良

【例5-38】数据的离差标准化。

def MinMaxScale(data):
    data = (data-data.min())/(data.max()-data.min())
    return data
x = np.array([[ 1., -1.,  2.],[ 2.,  0.,  0.],[ 0.,  1., -1.]])
print('原始数据为:\n',x)
x_scaled = MinMaxScale(x)
print('标准化后矩阵为:\n',x_scaled,end = '\n')

原始数据为:
 [[ 1. -1.  2.]
 [ 2.  0.  0.]
 [ 0.  1. -1.]]
标准化后矩阵为:
 [[0.66666667 0.         1.        ]
 [1.         0.33333333 0.33333333]
 [0.33333333 0.66666667 0.        ]]

【例5-39】数据的标准差标准化。

def StandardScale(data):
    data = (data-data.mean())/data.std()
    return data
x = np.array([[ 1., -1.,  2.],[ 2.,  0.,  0.],[ 0.,  1., -1.]])
print('原始数据为:\n',x)
x_scaled = StandardScale(x)
print('标准化后矩阵为:\n',x_scaled,end = '\n')

原始数据为:
 [[ 1. -1.  2.]
 [ 2.  0.  0.]
 [ 0.  1. -1.]]
标准化后矩阵为:
 [[ 0.52128604 -1.35534369  1.4596009 ]
 [ 1.4596009  -0.41702883 -0.41702883]
 [-0.41702883  0.52128604 -1.35534369]]

【例5-40】数据的哑变量处理。

df = pd.DataFrame([  
            ['green', 'M', 10.1, 'class1'],   
            ['red', 'L', 13.5, 'class2'],   
            ['blue', 'XL', 15.3, 'class1']])  
df.columns = ['color', 'size', 'prize','class label']  
print(df)
pd.get_dummies(df) 

   color size  prize class label
0  green    M   10.1      class1
1    red    L   13.5      class2
2   blue   XL   15.3      class1
prize color_blue color_green color_red size_L size_M size_XL class label_class1 class label_class2
0 10.1 0 1 0 0 1 0 1 0
1 13.5 0 0 1 1 0 0 0 1
2 15.3 1 0 0 0 0 1 1 0

【例5-41】cut方法应用。

np.random.seed(666)
score_list = np.random.randint(25, 100, size = 10)
print('原始数据:\n',score_list)
bins = [0, 59, 70, 80, 100]
score_cut = pd.cut(score_list, bins)
print(pd.value_counts(score_cut)) 
# 统计每个区间人数

原始数据:
 [27 70 55 87 95 98 55 61 86 76]
(80, 100]    4
(0, 59]      3
(59, 70]     2
(70, 80]     1
dtype: int64

例5-42 泰坦尼克数据集中的年龄字段进行分组转换为分类特征
如(<=12,儿童)、(<=18,青少年)、(<=60,成人)、(>60,老人)

import seaborn as sns
import sys
# 导入泰坦尼克数据集
df = sns.load_dataset('titanic')
display(df.head())
df['ageGroup']=pd.cut(
                    df['age'], 
                    bins=[0, 13, 19, 61, sys.maxsize], 
                    labels=['儿童', '青少年', '成人', '老人']
                      )
# sys.maxsize是指可以存储的最大值

display(df.head())
survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone
0 0 3 male 22.0 1 0 7.2500 S Third man True NaN Southampton no False
1 1 1 female 38.0 1 0 71.2833 C First woman False C Cherbourg yes False
2 1 3 female 26.0 0 0 7.9250 S Third woman False NaN Southampton yes True
3 1 1 female 35.0 1 0 53.1000 S First woman False C Southampton yes False
4 0 3 male 35.0 0 0 8.0500 S Third man True NaN Southampton no True
survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone ageGroup
0 0 3 male 22.0 1 0 7.2500 S Third man True NaN Southampton no False 成人
1 1 1 female 38.0 1 0 71.2833 C First woman False C Cherbourg yes False 成人
2 1 3 female 26.0 0 0 7.9250 S Third woman False NaN Southampton yes True 成人
3 1 1 female 35.0 1 0 53.1000 S First woman False C Southampton yes False 成人
4 0 3 male 35.0 0 0 8.0500 S Third man True NaN Southampton no True 成人

【例5-43】等频法离散化连续型数据。

def SameRateCut(data,k):
    k = 2
    w = data.quantile(np.arange(0,1+1.0/k,1.0/k))
    data = pd.cut(data,w)
    return data
result = SameRateCut(pd.Series(score_list),3)
result.value_counts()

(73.0, 98.0]    5
(27.0, 73.0]    4
dtype: int64

你可能感兴趣的:(数据分析与可视化,人工智能数据集处理,python,开发语言)