- 考公必知!中国古代文化常识大汇总
张小小大智慧
行测
考公人们都知道,行测常识判断里,中国古代文化常识可是常考内容。这些知识点不仅能帮你在笔试中多拿分,在面试时也能让你脱颖而出,展现深厚的文化底蕴。今天就来给大家系统梳理一下,建议点赞收藏,方便随时复习!一、中国古代艺术书法从殷商甲骨文开始,中国书法就踏上了它的历史征程。甲骨文刻在龟甲兽骨上,笔画刚硬,是古人占卜记事的载体。到了商周,金文盛行,铸刻在青铜器上,线条圆润,结构规整,庄重感十足。春秋战国时
- Python中的正则表达式完全指南
一键难忘
python正则表达式mysql
Python中的正则表达式完全指南正则表达式(RegularExpressions,简称regex)是一个非常强大的工具,广泛应用于文本处理、数据清洗、日志分析等领域。Python提供了re模块来处理正则表达式,它可以帮助我们在字符串中查找、替换、分割、匹配复杂模式等操作。本文将全面介绍Python中正则表达式的使用,包括基础语法、常用操作符、实用技巧,并配有代码实例,帮助大家深入理解。正则表达式
- Python入门教程丨3.2 再见Excel!用Python这5个模块,我把3天工作压缩到3分钟
凌小添
Python教程pythonexcel开发语言
⭐还在用Excel手动算均值方差?还在为海量数据统计熬夜加班?用Python这5把「数据手术刀」写一次代码,就能直接复用,专业报告自动生成!本期内容:模块核心功能应用场景math数学计算几何、物理模拟random生成随机数据游戏、抽样测试statistics统计分析回归分析、市场调研numpy数组与矩阵运算图像处理、机器学习pandas表格数据处理与分析金融分析、数据清洗一、基础数学库1.1mat
- R 字符串:深入理解与高效应用
lsx202406
开发语言
R字符串:深入理解与高效应用引言在R语言中,字符串是数据处理和编程中不可或缺的一部分。无论是数据清洗、数据转换还是数据分析,字符串的处理都是基础技能。本文将深入探讨R语言中的字符串概念,包括其基本操作、常见函数以及高效应用方法。字符串基本概念字符串定义在R语言中,字符串是由字符组成的序列,可以是中文字符、英文字符、数字或其他特殊字符。字符串是R语言中的一种基本数据类型,在数据分析和编程中具有广泛的
- 7个改变python金融分析神奇库
python茶水实验室
python金融开发语言数据结构beautifulsoupscikit-learnscrapy
理解几个常用的Python金融分析库对于金融数据处理和分析非常重要。以下是几个常用的Python金融分析库的介绍和理解方法:1.Pandas用途:用于数据操作和分析。功能:提供数据结构和数据分析工具,尤其适用于时间序列数据。如何学习:基础知识:熟悉DataFrame和Series,学习如何导入和导出数据。数据操作:掌握数据清洗、数据变换、数据聚合等操作。时间序列分析:了解如何处理和分析时间序列数据
- 【2025美赛D题】为更美好的城市绘制路线图建模|建模过程+完整代码论文全解全析
小天数模
25美赛数学建模
你是否在寻找数学建模比赛的突破点?数学建模进阶思路!作为经验丰富的美赛O奖、国赛国一的数学建模团队,我们将为你带来本次数学建模竞赛的全面解析。这个解决方案包不仅包括完整的代码实现,还有详尽的建模过程和解析,帮助你全面理解并掌握如何解决类似问题。详见文末问题一:第一步:数据整理与处理在处理数据时,可能会遇到以下问题:1.数据清洗:确保每个数据集都是干净的,删除无关的列、处理缺失值,确保数据的格式一致
- Python 爬虫实战:从喜马拉雅爬取有声书播放量,挖掘热门音频内容
西攻城狮北
python爬虫音视频实战案例
目录引言一、项目背景与需求分析1.1喜马拉雅平台的特点1.2数据爬取目标二、技术选型与工具准备2.1技术选型2.2工具准备三、爬取有声书播放量数据3.1获取音频列表3.2获取音频详情四、数据存储五、数据处理与分析5.1数据清洗5.2数据分析六、可视化展示七、总结与展望引言喜马拉雅作为国内知名的音频分享平台,拥有海量的有声书、广播剧、音乐等内容。通过爬取喜马拉雅上的有声书播放量数据,我们可以分析哪些
- 初始Pandas数据结构(DataFrame和Series)
aerfaqi
数据分析python数据挖掘
认识PandasPandas是Python语言的一个扩展程序库,用于数据挖掘和数据分析,同时也提供数据清洗功能。pandas(paneldata&dataanalysis),是基于numpy(提供高性能的矩阵运算)专门用于数据分析的工具,是一个强大的分析结构化数据(表格数据)的工具集;Pandas的操作是基于两种结构:DataFrame结构和Series结构DataFrame每一列都为Series
- Hadoop错误: put: Lease mismatch on ... by DFSClient_NONMAPREDUCE_-499992815_1.... 学习总结
星月情缘02
ETL技术Hadoophdfs租约hadoop错误
错误总结分享:使用了hadoop挺长时间了,多数人应该很熟悉它的特点了吧,但是今天突然遇到个错误,从来没见过,一时自己也想不到是什么原因,就在网上查了一些资料,得到了解决的办法,再次分享一下。过程:使用kettle数据清洗工具在进行同步任务的过程中,最后数据是被加载到hdfs的,这里用shell脚本实现,hdfsdfs-put-r/hdfs的目录。结果程序执行到这一步的时候报错了。错误描述就是文章
- 基于Python第三方模块fuzzywuzzy实现字符串匹配和相似度比较
袁袁袁袁满
Python实用技巧大全python开发语言fuzzywuzzy符串匹配和相似度比较
文章目录一、引言二、安装三、核心模块与功能1.fuzz模块的主要函数2.process模块的主要函数四、应用场景五、性能与优化一、引言fuzzywuzzy是一个强大的Python库,专门用于执行模糊字符串匹配和相似度比较。由SeatGeek开发并开源,它基于Levenshtein距离(编辑距离)算法,能够处理字符串之间的拼写错误、格式差异以及部分匹配等问题。fuzzywuzzy在数据清洗、文本匹配
- 深入解析:使用 Python 爬取二手车交易平台数据的全流程
Python爬虫项目
2025年爬虫实战项目python开发语言百度爬虫信息可视化
二手车交易平台提供了丰富的汽车交易数据,这些数据包含了车辆品牌、型号、价格、行驶里程、上牌时间等关键信息。这些数据对市场研究、价格预测、车辆性能分析等应用场景具有重要价值。本篇博客将带你深入学习如何用Python爬取二手车交易平台数据,提供详细的实现代码、突破反爬机制的技巧,以及数据清洗和分析的思路。一、二手车数据的价值与分析场景1.1数据价值二手车交易数据可以应用在以下场景:市场分析:了解当前二
- RiskCloud-基于Markov算法精准的FTA、 JSA、FMEA软件
资讯过客视点
算法
这个美美的“花蝴蝶”是什么?样式规整、图案美化、脉络清晰、让人眼前一亮!由上海歌略软件科技有限公司自主研发打造,RiskCloud世界领先的企业级整体风险管理解决方案大作!“BowTie领结图”接下来,就让我们携手一起走进RiskCloud-BowTie领结图,一起领略她的风采吧!风险管理领结图介绍20世纪90年代末,领结图作为一种独特的安全管理工具,开始在国外石油化工领域得到较为广泛的应用。基于
- 06-机器学习-数据预处理
不会打代码呜呜呜呜
机器学习机器学习人工智能
数据清洗数据清洗是数据预处理的核心步骤,旨在修正或移除数据集中的错误、不完整、重复或不一致的部分,为后续分析和建模提供可靠基础。以下是数据清洗的详细流程、方法和实战示例:一、数据清洗的核心任务问题类型表现示例影响缺失值数值型字段为空(NaN)模型无法处理缺失值,导致训练中断或偏差异常值年龄=200岁,房价=-100万扭曲统计指标(如均值),降低模型泛化性重复数据两行记录完全相同导致模型过拟合,降低
- 深度学习-70-大语言模型LLM之基于大模型LLM与检索增强技术RAG的智能知识库
皮皮冰燃
深度学习人工智能深度学习语言模型
文章目录1RAG出现的背景2搭建过程2.1数据收集2.2数据处理2.2.1数据清洗与预处理2.2.2文本分块2.2.3微调数据格式统一2.3建立向量索引2.4大模型选择与微调3开源知识库项目3.1FastGPT3.2AnythingLLM3.3LangChain-Chatchat4商业化解决方案4.1百度智能云+千帆大模型知识库4.2阿里云PAI+向量检索5参考附录1RAG出现的背景自从2022年
- Python 数据清洗与处理常用方法全解析
请为小H留灯
python大数据jupyterpandas
在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战。本文总结了多种数据清洗与处理方法:缺失值处理包括删除缺失值、固定值填充、前后向填充以及删除缺失率高的列;重复值处理通过删除或标记重复项解决数据冗余问题;异常值处理采用替换或标记方法控制数据质量;数据类型转换确保数据格式符合分析需求,例如转换为整数或日期类型;文本清洗包括去空格、字符替换及转换大小写等操作。此外,还介绍了数据分组统计、
- Python数据获取:从基础到实践,一场数据探索之旅
傻啦嘿哟
关于python那些事儿pythonoracle开发语言
目录一、引言二、理解数据获取的基本概念三、使用Python进行网络数据抓取3.1基础工具:requests库3.2解析HTML:BeautifulSoup库3.3实战案例:抓取网页新闻列表四、从文件中读取数据4.1使用pandas读取CSV文件4.2读取Excel文件五、数据库数据访问六、数据清洗与预处理6.1处理缺失值6.2处理异常值6.3处理重复值6.4数据格式化与编码6.5数据标准化与归一化
- Python数据分析之共享单车及建模探索(CLV建模、可视化)
weixin_46205203
笔记python数据分析数据建模
Python数据分析之共享单车及建模探索(CLV建模、可视化)开发环境4.3【开发平台及环境】Windons10教育版Python3.7IntelliJIDEA2018.2.1/PyCharmGoogeChrome数据清洗分析模块pandas,numpy可视化模块matplotlib上期原创:Python数据分析之智联招聘职位分析完整项目(数据爬取,数据分析,数据可视化)链接:https://bl
- 智能体(Agent)如何具备自我决策能力的机理与实现方法
由数入道
人工智能应急管理人工智能自然语言处理
一、智能体自我决策能力的机理从人工智能和控制理论的角度看,智能体能够“自我决策”的核心在于其“感知–认知–行动”的循环过程,以及在此过程中引入自主学习与自主优化的机制。经过优化与补充,智能体具备自我决策能力的机理可以分解为以下五个部分:1.自主感知与信息获取智能体通过传感器、数据库、互联网信息等多源数据采集,构建全面的环境感知能力。通过数据清洗、去噪、融合等方法,提升感知数据的可靠性,结合高维特征
- Python Pandas数据清洗与处理
大数据张老师
Python程序设计pythonpandas开发语言
PythonPandas数据清洗与处理在进行数据分析时,原始数据往往包含了许多不完整、不准确或者冗余的信息。数据清洗与处理的任务就是将这些杂乱无章的数据清理干净,确保数据的准确性和一致性,从而为后续的分析工作打下坚实的基础。Pandas提供了强大的工具来帮助我们清洗和处理数据,尤其是在处理Series和DataFrame时,它能够高效地进行数据的筛选、填充、删除、替换等操作。本节将通过一些常见的数
- Python数据分析案例教程
kkchenjj
数据挖掘python数据分析信息可视化
Python数据分析案例教程Python在数据分析中的应用Python因其简洁的语法、强大的库支持以及广泛的社区资源,已成为数据分析领域的首选语言。它能够处理从数据清洗、数据可视化到机器学习模型构建的整个数据科学流程。本节将深入探讨Python在数据分析中的具体应用,包括但不限于数据清洗、数据探索、统计分析和预测建模。数据清洗数据清洗是数据分析的首要步骤,涉及处理缺失值、异常值、重复数据以及数据类
- 航空客户价值的数据挖掘与分析(numpy+pandas+matplotlib+scikit-learn)
Want595
Python数据分析数据挖掘numpypandas
文章目录航空客户价值的数据挖掘与分析(numpy+pandas+matplotlib+scikit-learn)写在前面背景与挖掘目标1.1需求背景1.2挖掘目标1.3项目概述项目分析方法规划2.1RFM模型2.2LRFMC模型指标2.3分析总体流程图数据抽取探索及预处理3.1数据抽取3.2数据探索分析3.3数据预处理3.3.1数据清洗3.3.2属性规约3.3.3数据变换数据建模&应用4.1模型构
- wps2019数据分析加载项_怎样用Excel做数据分析(电商案例)
weixin_39907939
wps2019数据分析加载项
一、数据分析步骤明确问题:知道你要研究什么问题,从而有目地的查找数据理解数据:寻找与问题相关的数据;从数据中你能得出的信息;理解字段信息数据清洗(数据预处理):选择子集;列名重命名;删除重复值;缺失值处理;一致化处理;数据排序;异常值处理数据分析或构建模型:数据透视表;在Excel安装数据分析功能(安装步骤:文件~选项~加载项~Excel加载项转到~分析工具库,注意!这是MicrosoftExce
- 亿级表优化「TIDB 分区篇」,值得收藏
彭亚川Allen
数据库oracle
这是亿级别表优化的第二篇,对第一篇感兴趣的可以看看。亿级表优化思路之SQL篇-掘金写作背景距上次写亿级别优化已经有一个多月了,这段时间也没闲着,Q1对模型做了梳理,重构了这部分业务,主要做了下面这些优化数据模型优化(终于狠下心做了减法,去掉了2个模型)。做了分区表,数据日增量非常快,单表遇到读写瓶颈。复杂SQL优化,上次优化遗留的顽疾。数据清洗(流失数据、已删除数据备份归档)。所以,我还是总结这段
- 第17篇:python进阶:详解数据分析与处理
猿享天开
python从入门到精通python开发语言
第17篇:数据分析与处理内容简介本篇文章将深入探讨数据分析与处理在Python中的应用。您将学习如何使用pandas库进行数据清洗与分析,掌握matplotlib和seaborn库进行数据可视化,以及处理大型数据集的技巧。通过丰富的代码示例和实战案例,您将能够高效地进行数据处理、分析和可视化,为数据驱动的决策提供有力支持。目录数据分析与处理概述什么是数据分析与处理数据分析的流程使用pandas进行
- Python数据分析与可视化研究
阿尔法星球
pythonpython数据分析开发语言
Python数据分析与可视化研究摘要随着大数据和人工智能技术的飞速发展,Python数据分析与可视化技术已成为现代科学研究、企业决策等领域不可或缺的工具。本研究全面梳理了Python在数据分析与可视化领域的基本理论框架和关键技术,系统分析了Pandas、NumPy等核心数据分析库以及Matplotlib、Seaborn等可视化库的应用优势与特点。通过实际案例,本研究深入探讨了Python在数据清洗
- 网络安全法详细介绍——爬虫教程
小知学网络
网络安全web安全爬虫安全
目录@[TOC](目录)一、网络安全法详细介绍1.网络安全法的主要条款与作用2.网络安全法与爬虫的关系3.合法使用爬虫的指南二、爬虫的详细教程1.准备环境与安装工具2.使用`requests`库发送请求3.解析HTML内容4.使用`robots.txt`规范爬虫行为5.设置请求间隔6.数据清洗与存储三、实战示例:爬取一个公开的新闻网站小知学网络一、网络安全法详细介绍1.网络安全法的主要条款与作用《
- python数据分析与可视化
盆蒂
python开发语言
一、Python数据分析概述Python是一种解释型、交互式的编程语言,其设计理念强调代码的可读性和简洁性。Python的语法结构简单,支持面向对象、过程式和函数式三种编程范式,使得Python成为一种强大而灵活的编程语言。Python数据分析主要包括数据清洗、数据探索和数据可视化三个部分。数据清洗是数据分析的重要环节,主要是对数据进行预处理,包括缺失值处理、异常值处理、数据类型转换等。数据探索则
- 数仓建模:维度表合并时,如何确保数据的完整性?
莫叫石榴姐
收获不止一点java前端大数据数据分析算法hive
目录1.数据映射和合并规则2.数据清洗和转换3.数据完整性检查4.数据补全和关联5.数据验证和测试6.日志和监控往期精彩1.数据映射和合并规则思路:建立清晰的数据映射和合并规则,明确如何将源维度表的数据合并到目标维度表中,确保重要信息不丢失。具体操作:明确合并逻辑:对于要合并的维度表,确定每个字段的合并规则。例如,在合并dim_marketing_channel和dim_marketing_sou
- 《探秘鸿蒙Next:非结构化数据处理与模型轻量化的完美适配》
人工智能深度学习
在鸿蒙Next的人工智能应用场景中,处理非结构化数据并使其适配模型轻量化需求是一项关键且具有挑战性的任务。以下是一些有效的方法和策略。数据预处理数据清洗:非结构化数据中往往存在噪声、重复和错误数据。对于文本数据,要去除乱码、特殊字符等;对于图像数据,需处理模糊、损坏的图像。比如在处理鸿蒙Next设备采集的监控图像时,通过OpenCV的HarmonyOS适配库进行图像滤波等操作去除噪声。数据归一化与
- hive电影数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫2万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设计算机毕业设计hivespringboot爬虫
hive电影数据分析Springboot协同过滤-余弦函数推荐系统爬虫2万+数据大屏数据展示+[手把手视频教程和开发文档]【功能介绍】1.java爬取【豆瓣电影】网站中电影数据,保存为data.csv文件,数据量2万+2.data.csv上传到hadoop集群环境3.MR数据清洗data.csv4.Hive汇总处理,将Hive处理的结果数据保存到本地Mysql数据库中5.Springboot+Vu
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs