- 2025年开源大模型全景:语言、多模态与开发工具的前沿探索
软件职业规划
开源
语言类开源大模型1.Llama系列开发者:Meta发布时间:2024年7月参数量:8B、70B、405B特点:Llama系列模型以其强大的多语言支持和广泛的自然语言处理能力而闻名。它支持文本生成、问答、翻译等多种任务,尤其在处理长篇文本时表现出色,支持高达128K的上下文长度。Meta与超过25个合作伙伴共同推出该系列模型,包括亚马逊云科技、Databricks和英伟达等,推动了开源大模型在工业界
- 使用 Ollama 对 LLaMA-2 模型进行微调的详细指南
软件职业规划
llama
1.环境准备在开始微调之前,需要确保硬件和软件环境满足要求。合适的环境配置可以显著提高微调效率,并减少潜在的错误。1.1硬件要求大语言模型的微调需要强大的计算能力,尤其是GPU资源。以下是推荐的硬件配置:GPU:建议使用至少NVIDIARTX3090或更高配置的GPU。如果条件允许,使用多卡GPU(如RTX4090或A100)可以显著加快训练速度。对于更大的模型(如LLaMA-213B或33B),
- AI大模型时代,2025大龄程序员如何轻松转型赢未来?
AI大模型学习不迷路
人工智能自然语言处理大模型大语言模型语言模型程序员转行
当前大龄程序员的处境在科技行业的高速发展中,大龄程序员这一群体正面临着前所未有的挑战。随着新兴技术的不断涌现,如云计算、大数据、人工智能等,传统的编程技能逐渐显得“过时”。同时,年轻一代的程序员以更加低廉的薪酬和旺盛的精力涌入市场,加剧了职场的竞争。对于大龄程序员而言,他们不仅需要应对技能更新的压力,还常常受到年龄歧视的影响,尤其是在追求创新和速度的科技公司中。许多大龄程序员发现自己处于尴尬境地,
- 鑫云科技高性能万兆光纤共享存储------剪辑师们的“福音”
湖边野鹤
音视频图像处理图形渲染实时音视频
4K剪辑卡顿?可能是存储拖了后腿?林宇是个怀揣着导演梦的年轻人,大学毕业后,便一头扎进了影视剪辑的世界。他的剪辑技术在圈内小有名气,可最近,他却被一个问题折磨得焦头烂额。这天,林宇接到了一个重要项目,为一部4K电影预告片做剪辑。他信心满满地坐在电脑前,打开那配置不菲的工作站,导入素材,准备大显身手。然而,刚一开始剪辑,问题就接踵而至。每一次拖动时间轴,电脑都像是老牛拉破车,卡顿得厉害。原本流畅的剪
- HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发引言在金融科技领域,数据可视化是帮助用户快速理解复杂数据的关键工具。随着HarmonyNext的推出,开发者可以利用ArkTS的强大能力,构建高性能、跨平台的金融数据可视化应用。本文将深入探讨如何基于ArkTS开发一个金融数据可视化应用,并通过一个实战案例详细讲解其实现过程。项目背景与需求分析项目背景金融数据通常具有高维度、大
- 数字隐形盾牌:日常场景下的网络安全实践
安全防护
一、网络威胁:潜伏在屏幕后的"数字劫匪"2025年全球每11秒发生一次勒索攻击,每天新增45万个钓鱼网站,你的手机里可能正躺着3-5个高危漏洞。这些数据揭示了一个残酷现实:我们正生活在一个"数字丛林时代"。三大致命威胁:钓鱼攻击升级版:骗子不仅伪造银行邮件,现在会克隆公司高管的微信,用AI模仿老板声音要求转账**Wi-Fi陷阱:**商场免费Wi-Fi可能在15秒内窃取你的支付密码,机场充电桩可能成
- 长文本、知识库、微调对比
司南锤
程序院学习人工智能
长文本、知识库和微调是三种不同的技术手段,用于增强大模型的能力。1.长文本处理•核心目标:理解和生成长篇内容。•优点:•连贯性强,适合处理需要深入理解背景信息的任务。•适合复杂任务,如长篇阅读理解或文章生成。•缺点:•资源消耗大,处理长文本需要更多的计算资源和内存。•受上下文长度限制,可能会丢失一些细节信息。•适用场景:•写作助手:生成长篇博客、报告或故事。•阅读理解:处理长篇阅读理解任务,如学术
- 8051汇编--条件转移指令
wperseverance
51单片机51单片机
在8051汇编语言中,控制转移指令用于改变程序的执行顺序,主要包括无条件转移、条件转移和调用/返回指令。以下是对这些指令的总结:一、无条件转移指令LJMP(LongJump)•功能:长转移,可以跳转到同一程序空间中的任何地址。•指令格式:LJMPaddr16,其中addr16是16位的目标地址。•特点:跳转范围大,适用于跨段跳转。•使用场景:当需要跳转到较远的地址时使用。SJMP(ShortJum
- 【颠覆认知】大模型开发终极实战:30分钟用LangChain打造「超级AI客服」系统(附全代码+黑科技调参技巧)
煜bart
人工智能
重磅提示:文末含99%开发者不知道的Prompt逆向注入破解方案!---###一、撕开大模型开发的遮羞布:传统方案的三大致命陷阱传统AI客服系统开发面临:1.对话记忆金鱼症(7轮对话必失忆)2.知识库更新堪比器官移植3.业务逻辑与AI模型强耦合我们
- 人工智能_大模型091_大模型工作流001_使用工作流的原因_处理复杂问题_多轮自我反思优化ReAct_COT思维链---人工智能工作笔记0236
添柴程序猿
大模型开发&神经网络人工智能大模型工作流COT思维链ReAct自我反思优化大模型工作流开发
#清理环境信息,与上课内容无关importosos.environ["LANGCHAIN_PROJECT"]=""os.environ["LANGCHAIN_API_KEY"]=""os.environ["LANGCHAIN_ENDPOINT"]=""os.environ["LANGCHAIN_TRACING_V2"]=""#安装所需要使用的包!pipinstallopenailanggraphA
- 【开源代码解读】AI检索系统R1-Searcher通过强化学习RL激励大模型LLM的搜索能力
accurater
人工智能深度学习R1-Searcher
关于R1-Searcher的报告:第一章:引言-AI检索系统的技术演进与R1-Searcher的创新定位1.1信息检索技术的范式转移在数字化时代爆发式增长的数据洪流中,信息检索系统正经历从传统关键词匹配到语义理解驱动的根本性变革。根据IDC的统计,2023年全球数据总量已突破120ZB,其中非结构化数据占比超过80%。这种数据形态的转变对检索系统提出了三个核心的挑战:语义歧义消除:如何准确理解"A
- 非对称加密:SSL/TLS握手的数学基石
安全
1.密钥交换的密码学困局在未加密的HTTP通信中,攻击者可通过中间人攻击(MITM)窃听或篡改数据。SSL/TLS协议的核心挑战在于:如何在不安全的信道上建立安全通信?这本质上是一个“密钥分发问题”——若使用对称加密(如AES),双方需要共享同一密钥,但密钥本身如何安全传递?非对称加密的突破性在于公钥与私钥的分离。以RSA算法为例,其数学基础是大质数分解难题:选择两个大质数p和q(通常≥2048位
- 千问大模型携手超算互联网:算力驱动下的安全新征程
安全
一、技术革命的新纪元:从“火种”到“燎原”2025年3月,中国国家超算互联网平台宣布接入阿里巴巴“千问QwQ-32B”大模型。这一事件,标志着人类算力资源整合迈入新阶段——超算中心不再仅是巨型计算机的集合,而是演化为承载智能的“数字大脑”。用户可通过平台免费调用百万级Token的计算资源,如同古希腊神话中普罗米修斯盗火予人,超算互联网正将“智能之火”播撒至科研、工业乃至普通开发者手中。然而,火种既
- 基于大模型的单纯性孔源性视网膜脱离预测及治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、单纯性孔源性视网膜脱离概述2.1发病机制2.2高危因素2.3临床表现与诊断方法三、大模型在术前预测中的应用3.1模型选择与数据收集3.2术前风险预测指标3.3预测结果分析与验证四、基于预测结果的手术方案制定4.1手术原则与目标4.2不同预测结果下的手术方式选择4.3手术案例分析五、麻醉方案的确定5.1麻醉方式的选择依据5
- Gemini 2.0 全面解析:技术突破、应用场景与竞争格局
zhz5214
AI人工智能aiAI编程AI写作程序员创富
摘要2025年3月,谷歌正式发布Gemini2.0大模型,凭借其在多模态处理、代码生成和长上下文理解等领域的突破性进展,迅速成为AI领域的焦点。本文将深入剖析Gemini2.0的技术架构、应用场景及与Grok3、DeepSeekR1、ChatGPT-4.5等竞品的对比,探讨大模型技术的边界与未来趋势。1.Gemini2.0技术亮点1.1模型架构与性能提升Gemini2.0采用混合专家模型(MoE)
- GEE数据集——Harmonized Landsat Sentinel-2 (HLS) 卫星sentinel-2哨兵-2(HLS)
此星光明
GEE数据集专栏sentinel遥感影像gee数据集nasaHLS-2
简介统一大地遥感卫星哨兵-2(HLS)项目通过虚拟卫星传感器群提供一致的地表反射率(SR)和大气层顶部亮度(TOA)数据。陆地成像仪(OLI)安装在美国宇航局/美国地质调查局的联合陆地卫星8号和陆地卫星9号上,而多光谱仪(MSI)则安装在欧洲的哥白尼哨兵-2A号和哨兵-2B号卫星上。通过综合测量,可以每2到3天以30米的空间分辨率对陆地进行全球观测。HLS项目使用一套算法来获得OLI和MSI的无缝
- 通用开关与矩阵开关卡及多路复用开关的对比
北京阿尔泰科技厂家
矩阵自动化科技远程工作集成测试网络
1、通用开关是指由单个继电器构成的一类开关体系结构。用户可以将这些继电器互连,形成标准开关结构,如MUX或矩阵,应用到自己的体系结构,或者简单地用于切换单个信号线的通断。当用于创建更大的标准开关结构时,这种方法的缺点就是成本相对较高,或者性能较低,主要是因为连接器较高的引脚使用率,加上需要将继电器与连接器都要连接在一起,从而也导致密度很低。然而,这也使得他们非常灵活,特别是当使用外部互连系统,如大
- 32路模拟采集PCI总线带DIO用什么采集卡
阿尔泰1999
数据分析嵌入式硬件科技
北京阿尔泰科技PCI5659是一-款多功能数据采集卡,具有32路12位100K采集频率,AD带16K字FIFO缓存,保证数据的连续性,并带16路可设方向的DIO功能。产品支持阿尔泰科技最新的ART-DAQ数据管理软件,提供QT、PYTHON、LABVIEW、VC、VB、VB.NET、C#等例子程序。模拟量输入通道数32路精度12位*大采样频率100KsPs多通道采样速度各通道*大采样频率/设置的采
- 深入理解 OTSU 算法(大津法——最大类间方差法)
ZHauLee
机器学习算法计算机视觉人工智能
一、算法概述OTSU算法是一种用于图像分割的自动阈值选择算法,广泛应用于图像处理领域,特别是在二值化过程中。它是由日本学者大津展之(NobuyukiOtsu)在1979年提出,因此得名“OTSU算法”。二、算法原理OTSU算法的核心思想是通过遍历所有可能的阈值,将图像分割为前景(目标)和背景两部分,使得这两部分之间的类内方差(intra-classvariance)最小,或者说使得这两部分之间的类
- otsu算法_OTSU(大津法最大类间方差法)
weixin_39996742
otsu算法
OTSU基本介绍OTSU是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出,被誉为是图像分割中全局阈值选择的最佳方法。OTSU按照图像的灰度特性,将图像分成前景和背景两部分。因为方差可以看成是灰度分布均匀的一种度量,故前景和背景之间的类间方差越大,说明构成图像两部分的差别越大,当部分前景错分为背景或者部分背景被错分为前景时,都会导致两部分的差别变小。使用类间方差最大的分割一位置错分
- 大模型LLM基于PEFT的LoRA微调详细步骤---第一篇:模型下载篇
素雪风华
大模型下载Huggingface魔搭社区transformer
模型下载:HuggingFace官网:https://huggingface.co/----需要VPN魔搭社区:https://modelscope.cn/home----国内映射,不需要VPN写在篇始:国内关注方法一即可。其余几种都需要VPN,而且在服务器下载的速度有限~~。下一篇:微调详细流程以及环境...方法一:魔搭(modelscope)下载#需要安装pipinstallmodelscop
- Vue动态组件完全指南:原理、使用场景与最佳实践
北辰alk
前端vuevue.jsjavascript前端
文章目录一、什么是动态组件?核心特性:二、基本使用方式1.基础语法2.组件注册方式3.动态组件生命周期三、六大典型应用场景1.标签页切换系统2.多步骤表单流程3.动态仪表盘4.权限驱动视图5.插件系统集成6.服务端驱动界面四、高级使用技巧1.状态保持方案2.动态Props传递3.异步组件加载4.过渡动画支持五、性能优化策略1.缓存策略对比2.代码分割配置3.内存管理示例六、常见问题解决方案1.组件
- 大模型架构记录7-langchain
处女座_三月
LLMlangchain
一Langchain的应用目录:langchain的overviewprompttemplatemodelsandoutputparsers1.什么是langchain,为什么需要langchain?问题:如何没有langchain会怎么样?一个项目可能会包括:调用多个不同的大模型(gpt4,视频生成...)向量数据库数据类型(读取,trunk的切分...)langchain是面于大模型开发的框架
- 阿里巴巴发布 R1-Omni:首个基于 RLVR 的全模态大语言模型,用于情感识别
新加坡内哥谈技术
语言模型人工智能自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/情感识别一直是AI领域的难题,尤其是视觉与音频信号的融合。单独依赖视觉或音频的模型,往往
- java24种设计模式目录,为大家整理最全的24种设计模式详解,必收藏
高补
java24种设计模式目录
设计模式六大原则单一职责原则一个方法尽可能做一件事情,一般来说不应该让一个方法承担多个职责。单一职责原则的英文名称是SingleResponsibilityPrinciple,简称是SRP。单一职责原则的定义是:应该有且仅有一个原因引起类的变更。SRP的原话解释是:Thereshouldneverbemorethanonereasonforaclasstochange.单一职责原则提出了一个编写程
- 解码数字基因:数据架构如何重塑企业核心竞争力?——全面解析数据架构的战略价值与实践路径
领码科技
产业篇央国企技能篇数据架构数据模型数据资产目录企业数字化转型TOGAF
摘要:数据架构作为企业数字化转型的“基因图谱”,通过整合业务需求与IT实现,构建起数据流动的规则体系。本文系统剖析数据架构的四大核心组件(数据资产目录、数据模型、数据标准、数据分布)及其协同逻辑,揭示其在TOGAF4A架构中的桥梁作用,解读从架构规划到主数据落地的全生命周期管理。结合华为等标杆企业实践,提供兼具理论深度与实操指导的方法论框架,助力企业打造高质量数据底座。关键词:数据架构、数据模型、
- 智驾赋能新质生产力,开启“全感知时代”
高工智能汽车
汽车人工智能自动驾驶大数据
当前,人类社会正稳步踏入全领域智能化的崭新时代。工业智能化、农业智能化、商业智能化浪潮奔涌,全方位融入人们的工作与生活,成为推动社会进步的重要力量。在各行各业的高端技术前沿领域,设备智能化、自动化、无人化升级进程正不断加速。然而,环境感知与实时决策能力,始终是横亘在技术飞跃之路上的关键阻碍。这两大能力犹如高悬的“达摩克利斯之剑”,一旦成为短板,就会迅速演变为制约技术突破的“瓶颈”。只有精准、高效地
- 4D雷达再上热搜!华为/小米上车
高工智能汽车
自动驾驶人工智能汽车
智驾能力边界的不断抬升,对于传感器的要求仍在增加。去年至今,不管是端到端,还是大模型,本质上并没有解决摄像头(视觉感知)的物理性能缺陷;激光雷达处于成本下降区间,安全冗余作用明显,但对于恶劣天气、穿透能力以及抗干扰性仍存在劣势。而毫米波雷达“全天候全天时”工作的能力恰恰是最好的补充;同时,随着4D成像雷达技术的成熟,也解决了过去一直存在的目标识别精度有限、分辨率低以及高程探测能力有限等问题。尤其是
- Python真经:代码修仙录
zzzzjflzdvkk
python开发语言青少年编程python真经
第一章:Python真经的起源在八十年代末,九十年代初,荷兰国境之内,有一位名为GuidovanRossum的修士,于国家数学与计算机科学研究所中,悟出了一门无上真经——Python。此真经融合了诸多上古大能的智慧结晶,如ABC、Modula-3、C、C++、Algol-68、SmallTalk、Unixshell等,终成一体,化为Python真经。Python真经自诞生之日起,便遵循GPL(GN
- R+VIC模型融合实践技术应用及未来气候变化模型预测
科研的力量
水文地质土壤水文模型VIC模型
在气候变化问题日益严重的今天,水文模型在防洪规划,未来预测等方面发挥着不可替代的重要作用。目前,无论是工程实践或是科学研究中都存在很多著名的水文模型如SWAT/HSPF/HEC-HMS等。虽然,这些软件有各自的优点;但是,由于适用的尺度主要的是中小流域,所以在预测气候变化对水文过程影响等方面都有所不足。VIC模型是一个大尺度的半分布式水文模型,其设计之初就是为了模拟大流域的水文过程;它能够计算陆地
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc