- 【系统架构设计师-2018年】案例分析-答案及详解
数据知道
系统架构软考高级系统架构设计师
试题一(25分)阅读以下关于软件系统设计的叙述,在答题纸上回答问题1至问题3。【说明】某文化产业集团委托软件公司开发一套文化用品商城系统,业务涉及文化用品销售、定制、竞拍和点评等板块,以提升商城的信息化建设水平。该软件公司组织项目组完成了需求调研,现已进入到系统架构设计阶段。考虑到系统需求对架构设计决策的影响,项目组先列出了可能影响系统架构设计的部分需求如下:(a)用户界面支持用户的个性化定制;(
- 2024年一文1800字从0到1使用Python Flask实战构建Web应用(1)
2401_84564025
程序员pythonflask前端
现在我也找了很多测试的朋友,做了一个分享技术的交流群,共享了很多我们收集的技术文档和视频教程。如果你不想再体验自学时找不到资源,没人解答问题,坚持几天便放弃的感受可以加入我们一起交流。而且还有很多在自动化,性能,安全,测试开发等等方面有一定建树的技术大牛分享他们的经验,还会分享很多直播讲座和技术沙龙可以免费学习!划重点!开源的!!!qq群号:110685036第三部分:运行Flask应用在app.
- python-提示词对大模型推理有多重要?
给自己做加法
pythonpython语言模型
文章目录前言测试一个失败的提示词提示词内容knowledge内容提问的内容得到的回答说点啥能引导的提示词提示词内容knowledge内容提问的内容得到的回答说点啥结束语前言神级提示词一度成为AI圈的热搜,那么提示词对大模型推理到底有多重要?测试一个失败的提示词提示词内容基础知识:{knowledge};问题:{question};根据已知知识和基础知识回答问题knowledge内容{"商品名称":
- 大语言模型微调和大语言模型应用区别
AI Echoes
深度学习人工智能自然语言处理
大语言模型微调和大语言模型应用区别微调与应用LLM的区别微调大语言模型(LLM)是指取一个已经预训练好的模型,进一步用特定数据集训练,使其更好地适应某个任务或领域,比如为医疗聊天机器人优化医疗术语理解。应用LLM则是直接使用这些预训练模型来完成任务,如通过提示生成文本或回答问题,无需更改模型本身。研究表明,微调适合需要领域专精的任务,而应用更适合通用任务,效果因模型和任务复杂性而异。学习所需技术栈
- LLM - 白话AI Agent
小小工匠
【LLM大模型】人工智能AIAgentLLM
文章目录一、AIAgent:让大模型从"思考者"变为"行动者"二、Agent的基本工作原理三、Agent系统的基本组成四、Agent面临最大的挑战五、Java版智能体实战:竞品分析助手一、AIAgent:让大模型从"思考者"变为"行动者"大模型已经非常强大,能够生成内容、回答问题甚至协助编程。那为什么我们还需要AIAgent?简单的说,大模型就像一个“超级大脑”,知识丰富、能力强大,但它的问题是“
- AI 问答系统实战:用 Python + Flask + LLM 打造你的智能对话机器人!
Leaton Lee
人工智能pythonflask
开篇互动:你是否想拥属于自己的AI问答机器人?“你是否想过拥有一个可以随时为你解答问题、提供建议的AI助手?”随着大语言模型(LLM)的快速发展,打造一个智能问答系统已经成为可能!本文将手把手教你如何利用Python和Flask快速搭建一个属于自己的AI问答系统,并集成强大的语言模型(如OpenAI的GPT-3.5或HuggingFace的LLaMA)。无论是技术小白还是有一定经验的开发者,都能轻
- 论文阅读方法
某风吾起
work哲学与人生论文阅读
文章目录步骤一:对论文进行自我判断阅读题目和关键词。阅读摘要阅读总结要点步骤二:阅读文章阅读图表和图表的注释阅读引言阅读实验部分阅读结果和作者对结果的讨论(创新点)要点步骤三:精度论文回答问题1回答问题2回答问题3要点步骤一:对论文进行自我判断阅读题目和关键词。观察这些关键词是否与你的研究的内容有关。如果不相干,可以随时停止,换篇文章看。阅读摘要摘要一般包含了整篇文章的主要内容,是非常非常重要的部
- Manus VS DeepSeek:一文看懂两大AI平台核心差异
AI悦读社
人工智能
一.Manus是什么?Manus是由中国创业公司Monica开发的全球首款通用型AIAgent产品。它不同于传统的聊天机器人如ChatGPT,后者只能回答问题或提供建议,而Manus、还能够独立思考,能像人类一样主动规划任务、操作电脑软件,最终直接把成果交到你手上。通俗来说,Manus就像是一个“会动脑还会动手的智能实习生”二.Manus与DeepSeek的鲜明对比?Manus:你的“全能数字同事
- 深入浅出的理解deepseek类大模型(附运行代码)
AI人工智能时代
人工智能transformer机器人深度学习
我们把Qwen2模型想象成一个非常聪明的“阅读理解专家”。这个专家,就像我们人类一样,需要先“看”到文字,然后才能理解文字的意思,最后才能回答问题或者生成新的文字。深入理解之运行代码:fromtransformers.models.qwen2importQwen2Config,Qwen2Modelimporttorchdefrun_qwen2():#根据模型需求配置参数,构造Qwen2模型的配置对
- 实用AI工具推荐
DHLSP15
1024程序员节人工智能ai
在当今数字化时代,AI工具已经成为提升工作效率的重要助手。以下是一些实用AI工具的推荐,它们能在不同领域帮助你提高生产力:ChatGPT:由OpenAI开发,擅长文本生成、撰写文章、回答问题和编程辅助,支持多语言应用。JasperAI:专注于生成高质量的营销文案、社交媒体帖子和博客文章,适合内容创作者和营销人员。DALL·E:由OpenAI推出,能根据文字描述生成图像,适合设计师和内容创作者快速创
- RAG 检索增强生成:技术详解与应用展望
君君学姐
RAG检索增强生成
RAG检索增强生成:技术详解与应用展望一、引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了前所未有的变革。其中,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)作为一种新兴的技术框架,正逐渐成为大模型应用中的热门选择。RAG通过结合信息检索(IR)和自然语言生成(NLG)的能力,旨在提升模型在回答问题、生成文本等任务中的准确性和可靠性。本文将深
- 问小白 + DeepSeek:强强联合,开启高效智能之旅
a小胡哦
Deepseek问小白
小白网站搭配DeepSeek这两者一结合,那可真是1+1>2,优势多多!问小白×DeepSeek的超强优点速度王者,快人一步问小白接入的可是DeepSeekR1满血版,还支持联网。别家产品用DeepSeek回答问题,可能要等个4秒以上,在问小白这儿,1-2秒就能得到首个token响应。不管你是着急写报告查资料,还是临时要个创意灵感,这速度绝对能满足你。就好比你在问小白上问“如何评价科技媒体特工宇宙
- LangChain数据代理(Agents)与Function Calling解析
一个头发很多的程序员
langchain实战langchainpython人工智能语言模型prompt
数据代理(Agents):赋予模型行动力的FunctionCalling在LangChain的生态中,数据代理(Agents)是一个关键部分,它将语言模型的能力从“回答问题”拓展为“主动行动”,为自动化和复杂任务处理带来了巨大优势。而这一切的核心就在于FunctionCalling——一种让模型具备轻松调用外部函数或工具的神奇技术。本篇文章将以智能助手的构建为例,深入解析数据代理的原理和实践。Fu
- 应届生Java面试经验总结
m0_74824534
面试学习路线阿里巴巴java面试开发语言
一、找工作阶段背景介绍非名校,软件工程专业,无相关工作经验,实际编程只有在学校学习时。刚刚毕业,找工作中。大家都知道,开发这一行没有工作经验相当的吃亏,如果没有丰富的知识,对知识良好的理解,与优秀的自学能力,很难找到工作。经过近一个月的面试,总结一些信息。面试过程一面都是hr面。良好的表达能力,与亲和力能增加进入二面的几率,其实只要不紧张,好好回答问题都没什么问题。具体有些需要注意的问题,如下:请
- Dify理论:漫话RAG
几道之旅
Dify与Langflow智能体(Agent)知识库人工智能自然语言处理nlp
兜兜转转,RAG依旧是绕不开的话题。RAG,检索增强生成。给大语言模型一个大型图书馆。大语言模型在回答问题前,不要急于回答。先去图书馆里查阅一番,再根据所获取的知识进行回答。大语言模型,由闭卷考试,变成了开卷考试。第一:减轻了大模型的幻觉。大模型在不知道答案时,往往会胡编乱造。如今,有人把答案告诉了它,它只需要整理一下语言即可。使用大语言模型回答问题时,最极端的情况下,它收到的问题是:请根据背景知
- 细说向量化知识库
CCSBRIDGE
人工智能人工智能
向量化知识库与RAG:打造智能AI知识检索系统引言在大模型(LLM)迅猛发展的今天,如何让AI获取最新、最准确的信息,成为一个核心问题。大多数LLM依赖其训练数据来回答问题,但它们的知识是静态的,无法实时更新。向量化知识库(VectorizedKnowledgeBase)+检索增强生成(Retrieval-AugmentedGeneration,RAG)提供了一种高效的解决方案。本文将深入解析向量
- 怎么提升自定义知识库的质量(向量知识库)
CCSBRIDGE
人工智能人工智能
上传文档后,CherryStudio或者AnythingLLM会将内容转换为向量数据库(VectorDatabase),然后用于检索增强生成(RAG,Retrieval-AugmentedGeneration)。这样,LLM在回答问题时,可以从这些文档中检索相关内容,从而提高回答的准确性和信息量。1.影响检索效果的关键因素为了让LLM更准确、更高效地使用你的文档,这些因素很重要:✅适合的文档格式虽
- 【信息系统项目管理师-案例真题】2022下半年案例分析答案和详解
数据知道
软考高级高项信息系统项目管理师软考高项案例分析
更多内容请见:备考信息系统项目管理师-专栏介绍和目录文章目录试题一(24分)【问题1】(6分)【问题2】(10分)【问题3】(8分)试题二(26分)【问题1】(8分)【问题2】(8分)【问题3】(4分)【问题4】(6分)试题三(25分)【问题1】(12分)【问题2】(7分)【问题3】(6分)试题一(24分)阅读下列说明,回答问题1至问题3,将解答填入答题纸对应栏内。【说明】某集团为提升企业服务水平
- 怎么使用DeepSeek?DeepSeek使用教程
轻创思维
网络
1.简介DeepSeek是一款基于人工智能技术的智能搜索引擎和信息检索工具。它能够通过自然语言处理技术理解用户的查询需求,并提供精准、全面的搜索结果。无论您是想查找信息、解答问题还是进行创意写作,DeepSeek都能为您提供高效的支持。2.主要功能智能搜索:支持自然语言输入,快速获取精准结果。多语言支持:支持中文、英文及其他多种语言的输入和输出。知识库覆盖:整合海量互联网信息,覆盖百科、新闻、学术
- DeepSeek底层揭秘——多跳推理
9命怪猫
AI人工智能大模型深度学习ai神经网络
1.多跳推理(1)定义多跳推理(Multi-hopReasoning)是一种复杂的推理技术,指模型在回答问题或解决任务时,需要跨越多个信息片段或知识点,逐步推导出最终答案,而不是直接从单一信息源中获取结果。每一次跨越称为一个“跳跃”(hop),多跳推理通常需要模型具备逻辑推理能力、上下文理解能力以及信息整合能力。例如,在自然语言处理(NLP)中,多跳推理任务可能需要模型从多个段落中提取相关信息,并
- JavaSE基础及面试
浩哲Zhe
Java知识体系构建java
JavaSE整理总结结构:问题(问题关键字)回答问题关键字可以取消,以后目录和题目结构要认真组织。Java的知识体系包含哪些内容?拓展拓展如何打开远程桌面连接?通过“运行”对话框打开:按下Windows键+R,打开“运行”对话框。输入“mstsc”并按回车,这将打开远程桌面连接窗口。VisualStudio中的多行注释快捷键是什么?ctrl+shift+/二进制-1的原码、补码、反码分别是什么?-
- deep seek
m0_69576880
前端ai
1.介绍:DeepSeek是一款由国内人工智能公司研发的大型语言模型,拥有强大的自然语言处理能力,能够理解并回答问题,还能辅助写代码、整理资料和解决复杂的数学问题。免费开源,媲美ChatGPT最近最火爆的AI对话程序。www.deepseek.com这是deepseek官网2.这是deepseek注册页面3.国产语言对话ai,大家有兴趣的可以去试试。不过chatgpt也进行了改变,大家也可以免费使
- 大语言模型的分类及本地部署所需的硬件配置要求
Kelaru
LLM基础知识语言模型分类人工智能
1、大语言模型概念及作用大语言模型:(LargeLanguageModel,LLM)是一种基于深度学习的人工智能模型,它能够理解和生成自然语言[1]。简单来说,它就像一个“超级大脑”,能够处理各种语言任务,比如写文章、回答问题、翻译语言等;它通过训练大量的文本数据,学习语言的结构、语法、语义以及上下文关联,从而能够理解和生成与人类语言相似的文本。举个例子:如果你问它一个问题,比如:“为什么天空是蓝
- 【干活分享】2025年可以免费问答的一些GPT网站-deepseek等免费gpt
春晓_春眠花落
gpt
2025年已经到来,大家也都陆续回归到忙碌的工作中。在新的一年里,如何更高效地完成工作任务,提升工作效率,是很多人关心的问题。今天,就为大家分享一些实用性很强的GPT网站,帮助大家在工作中事半功倍。DeepSeekDeepSeek是一个基于人工智能技术的虚拟助手,旨在为用户提供信息、解答问题和协助完成各种任务。它能够处理多种主题,包括但不限于科学、技术、文化、历史等领域。DeepSeek的目标是为
- openAI官方prompt技巧(二)
槑槑紫
AIGCprompt人工智能chatgpt
1.赋予ChatGPT角色为ChatGPT指定一个角色,让其从特定的身份或视角回答问题。这有助于生成针对特定受众或场景的定制化回答。例如:你是一名数据分析师,负责我们的市场营销团队。请总结上个季度的营销活动表现,并强调与未来活动规划相关的关键指标。2.使用分隔符例如:将以下用三重引号包围的文本翻译为法语:"""我们将安排会议在下周五,并审核你对项目计划的更新。请邀请产品团队的联系人,并准备好分享下
- 探秘DeepSeek多模态交互:解锁AI融合新境界
计算机学长
通用大语言模型人工智能
引言在人工智能飞速发展的当下,多模态交互技术已成为推动人机交互变革的关键力量。DeepSeek作为多模态交互领域的重要参与者,以其创新的技术和出色的性能,在智能客服、智能教育、智能创作等众多领域得到了广泛应用,为人们的生活和工作带来了极大的便利。例如,在智能客服场景中,DeepSeek能够同时理解用户的语音和文字输入,快速准确地回答问题,提升客户服务效率;在智能教育领域,它可以根据学生的学习情况,
- 人工智能(Artificial Intelligence,简称AI)
Kingdom_Garden
人工智能
前言:在面试自动化小企业时,面试官问我人工智能的英文是?以至于你是否真的知道人工智能四个字的含义,他说很多年轻人都只知道deepseek能回答问题,所以记录此文章,希望后续有相同经历的朋友能了解一下别踩坑。人工智能(ArtificialIntelligence,简称AI)是指通过计算机系统模拟人类智能的能力,使其能够执行通常需要人类智慧的任务。这些任务包括学习、推理、问题解决、感知、语言理解等。人
- 接入deepseek构建RAG企业智能问答系统
da pai ge
prometheuskubernetesjavascript
RAG基础流程AI大模型回答问题的方式AI大模型基于其训练的数据回答所有问题。如果未针对特定业务(如美团)进行专门“学习”,面对直接相关的问题时,无法给出理想的答案。让AI大模型“学习”业务知识的两种主要方法:微调(Fine-Tuning):在预训练模型基础上根据特定任务和数据集调整参数。RAG(Retrieval-AugmentedGeneration,检索增强生成):使用泛化的大模型,通过对问
- 在一个100条语句的列表中,其中第n条语句写的是“列表中恰有n条语句为假。”
侃山
离散数学习题逻辑推理
在一个100条语句的列表中,其中第n条语句写的是“列表中恰有n条语句为假。”a)你能从这些语句中得出什么结论b)如果第n条语句写的是“列表至少有n条语句为假”,回答问题a)c)假设这个列表包含99条语句,回答问题b)a)你能从这些语句中得出什么结论首先应该明白,这100条语句是互相矛盾的,最多只有一条语句是正确的。先来看第100条语句,假设它是正确的,则所有语句均错误(否定了自己),则它是错误的,
- ChatGPT入门- GPT 4.0 新手使用手册(结合案例讲解)
玩AI的小胡子
chatgptgpt人工智能AIGC
ChatGPT4.0的功能特点1.自然语言理解与生成:ChatGPT4.0能够理解复杂的自然语言指令,并生成与人类相似的文本。无论是撰写文案、回答问题,还是创作故事,它都能表现得游刃有余。2.上下文保持与逻辑推理:相比于前几代模型,GPT4.0在对话过程中能够更好地保持上下文的连续性,并进行逻辑推理。这意味着用户可以与它进行更深入的对话,而不必担心模型丢失之前的上下文信息。3.多语言支持:GPT4
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep