给你一个链表数组,每个链表都已经按升序排列。
请你将所有链表合并到一个升序链表中,返回合并后的链表。
示例 1:
输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
1->4->5,
1->3->4,
2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6
示例 2:
输入:lists = []
输出:[]
示例 3:
输入:lists = [[]]
输出:[]
提示:
k == lists.length
0 <= k <= 10^4
0 <= lists[i].length <= 500
-10^4 <= lists[i][j] <= 10^4
lists[i] 按 升序 排列
lists[i].length 的总和不超过 10^4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/merge-k-sorted-lists
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
跟 21.合并两个有序链表 的基本思路是一样的,只不过每轮操作需要比较 k 个链表节点的值。
JavaScript Code
/** * Definition for singly-linked list. * function ListNode(val, next) { * this.val = (val===undefined ? 0 : val) * this.next = (next===undefined ? null : next) * } */ /** * @param {ListNode[]} lists * @return {ListNode} */ var mergeKLists = function (lists) { if (!lists || !lists.length) return null; let dummy = new ListNode(); let tail = dummy; while (!isEmpty(lists)) { const min = getMin(lists); tail.next = new ListNode(min.val); tail = tail.next; } return dummy.next; // ********************************************** function getMin(lists) { let minIndex = -1, minNode = new ListNode(Infinity); for (let i = 0; i < lists.length; i++) { const node = lists[i]; if (node && node.val < minNode.val) { minNode = node; minIndex = i; } } lists[minIndex] = minNode.next; return minNode; } function isEmpty(lists) { return lists.every(n => n === null); } };
C++ code
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode() : val(0), next(nullptr) {} * ListNode(int x) : val(x), next(nullptr) {} * ListNode(int x, ListNode *next) : val(x), next(next) {} * }; */ class Solution { private: bool isEmpty_(vector& lists) { for (int i = 0; i < lists.size(); i++) { if (lists[i]) return false; } return true; } int getMinVal_(vector & lists) { int ans = INT_MAX; int idx = -1; for (int i = 0; i < lists.size(); i++) { if (lists[i] && lists[i]->val < ans) { ans = lists[i]->val; idx = i; } } lists[idx] = lists[idx]->next; return ans; } public: ListNode* mergeKLists(vector & lists) { ListNode* dummy = new ListNode(); ListNode* tail = dummy; while (!isEmpty_(lists)) { int min_val = getMinVal_(lists); tail->next = new ListNode(min_val); tail = tail->next; } return dummy->next; } };
跟 方法1 思路一致,不过用了堆来寻找 k 个链表节点中的最小值。
JavaScript Code
/** * Definition for singly-linked list. * function ListNode(val, next) { * this.val = (val===undefined ? 0 : val) * this.next = (next===undefined ? null : next) * } */ /** * @param {ListNode[]} lists * @return {ListNode} */ var mergeKLists = function (lists) { if (!lists || !lists.length) return null; let dummy = new ListNode(); let tail = dummy; const heap = new MinHeap(lists.filter(Boolean), function comparator(inserted, compared) { return inserted.val > compared.val; }); while (heap.size() > 0) { const min = heap.pop(); tail.next = new ListNode(min.val); tail = tail.next; min.next && heap.insert(min.next) } return dummy.next; }; // ************************************************** class Heap { constructor(list = [], comparator) { this.list = list; this.comparator = comparator; this.init(); } init() { const size = this.size(); for (let i = Math.floor(size / 2) - 1; i >= 0; i--) { this.heapify(this.list, size, i); } } insert(n) { this.list.push(n); const size = this.size(); for (let i = Math.floor(size / 2) - 1; i >= 0; i--) { this.heapify(this.list, size, i); } } peek() { return this.list[0]; } pop() { const last = this.list.pop(); if (this.size() === 0) return last; const returnItem = this.list[0]; this.list[0] = last; this.heapify(this.list, this.size(), 0); return returnItem; } size() { return this.list.length; } } class MinHeap extends Heap { constructor(list, comparator) { if (typeof comparator != 'function') { comparator = function comparator(inserted, compared) { return inserted > compared; }; } super(list, comparator); } heapify(arr, size, i) { let smallest = i; const left = Math.floor(i * 2 + 1); const right = Math.floor(i * 2 + 2); if (left < size && this.comparator(arr[smallest], arr[left])) smallest = left; if (right < size && this.comparator(arr[smallest], arr[right])) smallest = right; if (smallest !== i) { [arr[smallest], arr[i]] = [arr[i], arr[smallest]]; this.heapify(arr, size, smallest); } } }
JavaScript Code
/** * Definition for singly-linked list. * function ListNode(val, next) { * this.val = (val===undefined ? 0 : val) * this.next = (next===undefined ? null : next) * } */ /** * @param {ListNode[]} lists * @return {ListNode} */ var mergeKLists = function(lists, start = 0, end = lists.length - 1) { if (start > end) return null; if (start === end) return lists[start]; const mid = ((end - start) >> 1) + start; return mergeTwoLists(mergeKLists(lists, start, mid), mergeKLists(lists, mid + 1, end)); }; function mergeTwoLists(l1, l2) { if (!l1) return l2; if (!l2) return l1; if (l1.val < l2.val) { l1.next = mergeTwoLists(l1.next, l2); return l1; } else { l2.next = mergeTwoLists(l1, l2.next); return l2; } }
C++ Code
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode() : val(0), next(nullptr) {} * ListNode(int x) : val(x), next(nullptr) {} * ListNode(int x, ListNode *next) : val(x), next(next) {} * }; */ class Solution { public: ListNode* mergeKLists(vector& lists) { return mergeKLists(lists, 0, lists.size() - 1); } ListNode* mergeKLists(vector & lists, int start, int end) { if (start > end) return nullptr; if (start == end) return lists[start]; int m = (end - start) / 2 + start; return merge2Lists(mergeKLists(lists, start, m), mergeKLists(lists, m + 1, end)); } ListNode* merge2Lists(ListNode* l1, ListNode* l2) { if (!l1) return l2; if (!l2) return l1; if (l1->val < l2->val) { l1->next = merge2Lists(l1->next, l2); return l1; } else { l2->next = merge2Lists(l1, l2->next); return l2; } } };