思路|活体检测

一、二分类模型

1.(yu)数据集:使用nuaa数据集的 crop的人脸图片;

网络结构:mobilenet;

训练结果:收敛至val acc 0.85左右

实时视频测试:mtcnn 检测人脸,效果很不好,完全没有区分能力


2.使用nuaa+replayattack数据集(train和val),mtcnn统一预处理

网络结构:mobilenet、inception Resnet、unet接二分类输出层训练模型

loss函数:categorical_crossentropy

训练方式:all layers trainable

优化器:adam

训练结果:


inceptionResnet
mobileNet


unet

1)截图测试(1000张):

    inception Resnet: total:1082; correct:737; percent:0.681146

    mobileNet: total:1082; correct:555; percent:0.512939

    unet: total:1082; correct:550; percent:0.508318


3.使用nuaa数据集(train、val)

训练结果:


inceptionResnet
mobileNet
unet

1)replayattack数据集(val)测试:

    inceptionResnet: total:10503; correct:4163; percent:0.396363

    mobileNet: total:10503; correct:4654; percent:0.443111

    unet: total:10503; correct:4304; percent:0.409788


2)截图测试(1000张):

    inceptionResnet: total:1082; correct:338; percent:0.312384

    mobileNet: total:1082; correct:345; percent:0.318854

    unet: total:1082; correct:174; percent:0.160813


4.使用replayattack数据集(train、val和test)

训练结果:


inceptionResnet
mobileNet
unet


gram_vgg16


gram_vgg16_mobilenet


replayattack_gram_vgg16_mobilenet_normalization
replayattack_gram_vgg16_mobilenet_normalization_


gram_model


gram_model_2

1)test 数据集测试:

    inceptionResnet: total:12198; correct:11111; percent:0.910887

    mobileNet: total:12198; correct:12001; percent:0.983850

    unet: total:12198; correct:11745; percent:0.962863

    gram_vgg16: total:12198; correct:11991; percent:0.983030

    gram_vgg16_mobilenet:total:12198; correct:7965; percent:0.652976

    gram_vgg16_mobilenet_normalization:total:12198; correct:11900; percent:0.975570

    gram_vgg16_mobilenet_normalization_2:total:12198; correct:12073; percent:0.989752

    gram_model: total:12198; correct:12178; percent:0.998360

    gram_model_2:total:12198; correct:12001; percent:0.983850

2)nuaa数据集(val)测试:

    inceptionResnet:total:2193; correct:1146; percent:0.522572

    mobileNet: total:2193; correct:1168; percent:0.532604

    unet: total:2193; correct:1065; percent:0.485636

    gram_vgg16: total:2193; correct:1143; percent:0.521204

    gram_vgg16_mobilenet:total:2193; correct:1179; percent:0.537620

    gram_vgg16_mobilenet_normalization:total:2193; correct:1119; percent:0.510260

    gram_vgg16_mobilenet_normalization_2:total:2193; correct:1114; percent:0.507980

    gram_model: total:2193; correct:1088; percent:0.496124

    gram_model_2:total:2193; correct:1053; percent:0.480164

3)截图测试(1000张):

    inceptionResnet:total:1082; correct:592; percent:0.547135

    mobileNet:total:1082; correct:734; percent:0.678373

    unet:total:1082; correct:675; percent:0.623845

    gram_vgg16: total:1082; correct:672; percent:0.621072

    gram_vgg16_mobilenet: total:1082; correct:745; percent:0.688540

    gram_vgg16_mobilenet_normalization:total:1082; correct:636; percent:0.587800

    gram_vgg16_mobilenet_normalization_2:total:1082; correct:730; percent:0.674677

    gram_model: total:1082; correct:706; percent:0.652495

    gram_model_2:total:1082; correct:637; percent:0.588725


二、FDA

数据集:replayattack +FDA预处理

网络结构:mobilenet

训练结果:


mobilenet

1)test 数据集测试:

total:12198; correct:10408; percent:0.853255

2)nuaa数据集(val)测试:

total:2193; correct:930; percent:0.424077

3)截图测试(1000张):

total:1082; correct:553; percent:0.511091

结论:较未使用FDA的效果反而更差了


三、统计


你可能感兴趣的:(思路|活体检测)