C51_day4:定时器与中断

1. 简介

C51中的定时器和计数器是同一个硬件电路支持的,通过寄存器配置不同,就可以将他当做定时器或者计数器使用。确切的说,定时器和计数器区别是致使他们背后的计数存储器加1的信号不同。当配置为定时器使用时,每经过1个机器周期,计数存储器的值就加1。而当配置为计数器时,每来一个负跳变信号(信号从P3.4 或者P3.5引脚输入),就加1,以此达到计数的目的。标准C51有2个定时器/计数器:T0和T1。他们的使用方法一致。C52相比C51多了一个T2

1.1 概念解读

定时器和计数器,电路一样

定时或者计数的本质就是让单片机某个部件数数

当定时器用的时候,靠内部震荡电路数数

当计数器用的时候,数外面的信号,读取针脚的数据

1.2 定时器怎么定时

定时器的本质原理: 每经过一个机器周期,就加1 :寄存器

思考:

什么是晶振

晶振(晶体震荡器),又称数字电路的“心脏”,是各种电子产品里面必不可少的频率元器件。数字电路的所有工作都离不开时钟,晶振的好坏、晶振电路设计的好坏,会影响到整个系统的稳定性。

什么是时钟周期

时钟周期也称为振荡周期,定义为时钟频率的倒数。时钟周期是计算机中最基本的、最小的时间单位。在一个时钟周期内,CPU仅完成一个最基本的动作。时钟周期是一个时间的量。更小的时钟周期就意味着更高的工作频率

什么是机器周期

机器周期也称为CPU周期。在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段(如取指、译码、执行等),每一阶段完成一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个时钟周期组成

 C51_day4:定时器与中断_第1张图片

加1经过了多少时间

当晶振频率是11.0592MHz的时候,等于11059.2KHz = 11059200Hz机器周期 = 12 x 时钟周期 =12 x (1/时钟频率) 秒 = 12 / 时钟频率 秒 = 12 / 11059200 秒 = 12 000 000 / 11059200 微秒 = 1.085 微秒 

1.3 定时器编程

相关寄存器:

C51_day4:定时器与中断_第2张图片

(1)在哪里加1,最大计数时间,也就是爆表了能计算多长

在TH0/1和TL0/1寄存器中加1,默认是从0开始数数,最多能数65536下,累计计时71ms

(2)如何算出10ms定时器的初值

就不让他从0开始数数,10ms需要数9216下,你让他从65536-9126=56320(16进制表示为0xDC00)

开始数数这样TL0=0x00;TH0=0xDC

关于TCON

C51_day4:定时器与中断_第3张图片 

 C51_day4:定时器与中断_第4张图片

 

 

 (1)怎么知道爆表

TCON寄存器的bit5(TF0)能表示爆表:当爆表的时候,硬件会修改bit5(TF0)位上面的数据,改成1(置1),如果不用中断,我们代码清零

(2)怎么开始计时

TCON寄存器的bit4,通过编程让这个位为1的时候,开始计时,相当于按下了闹钟

(3)定时器使用是有很多种模式的

定时器模式寄存器:TMOD来选择定时器模式,选择工作方式1,TMOD的bit0 bit1配置成0 1 :16的定时器功能

(4)四个二进制数表示一位的16进制数

8421法进制的转换(方便人类来看,对计算机底层来说,不关心进制010101010)

(5)配寄存器推荐用按位操作,清零的时候,对应的需要清零的位与上0,不需要清零的位与上1

置1的时候,需要置1的位置或1,不需要置一的位置或0

#include "reg52.h"

sbit led = P3^6;

void main()
{
	int cnt = 0;
	led = 1;
	
	//1. 配置定时器0工作模式位16位计时
	TMOD = 0x01;
	//2. 给初值,定一个10ms出来
	TL0=0x00;
	TH0=0xDC;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	
	while(1){
		if(TF0 == 1)//当爆表的时候,硬件会修改bit5(TF0)位上面的数据,改成1
		{
			TF0 = 0;//不用中断,必须软件清零
			cnt++;  //统计爆表的次数
			//重新给初值
			TL0=0x00;
			TH0=0xDC;
			if(cnt == 100){//爆表100次,经过了1s
				cnt = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
				led = !led;//每经过1s,翻转led的状态
			}
		}
	}
}

 1.4 定时器中断方式控制:寄存器TF位溢出会自动根据中断号调用T0定时器中断处理函数

C51_day4:定时器与中断_第5张图片

 

#include "reg52.h"

sbit led = P3^6;
sbit led1 = P3^7;
int cnt = 0;

void Time0Init()
{
	//1. 配置定时器0工作模式位16位计时
	TMOD = 0x01;
	//2. 给初值,定一个10ms出来
	TL0=0x00;
	TH0=0xDC;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	//4. 打开定时器0中断
	ET0 = 1;
	//5. 打开总中断EA
	EA = 1;
}

void Delay300ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	i = 3;
	j = 26;
	k = 223;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}

void main()
{
	led = 1;
	Time0Init();
	while(1){
		led1 = 0;
		Delay300ms();
		led1 = 1;
		Delay300ms();
	}
}

void Time0Handler() interrupt 1
{
	cnt++;  //统计爆表的次数
	//重新给初值
	TL0=0x00;
	TH0=0xDC;
	if(cnt == 100){//爆表100次,经过了1s
		cnt = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
		led = !led;//每经过1s,翻转led的状态
	}
		
}

 2. PWM开发SG90

C51_day4:定时器与中断_第6张图片

2.2 如何实现PWM信号输出 

C51_day4:定时器与中断_第7张图片

C51_day4:定时器与中断_第8张图片 

C51_day4:定时器与中断_第9张图片 

C51_day4:定时器与中断_第10张图片 

 

#include "reg52.h"

sbit sg90_con = P1^1;
int jd;
int cnt = 0;


void Delay2000ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	i = 15;
	j = 2;
	k = 235;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}


void Time0Init()
{
	//1. 配置定时器0工作模式位16位计时
	TMOD = 0x01;
	//2. 给初值,定一个0.5出来
	TL0=0x33;
	TH0=0xFE;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	//4. 打开定时器0中断
	ET0 = 1;
	//5. 打开总中断EA
	EA = 1;
}

void Delay300ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	i = 3;
	j = 26;
	k = 223;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}

void main()
{
	Delay300ms();//让硬件稳定一下
	Time0Init(); //初始化定时器
	jd = 1;      //初始角度是0度,0.5ms,溢出1就是0.5,高电平
	cnt = 0;
	sg90_con = 1;//一开始从高电平开始
	
	//每隔两秒切换一次角度
	while(1){
		jd = 3; //90度 1.5ms高电平
		cnt = 0;
		Delay2000ms();
		jd = 1; //0度
		cnt = 0;
		Delay2000ms();
	}
}

void Time0Handler() interrupt 1
{
	cnt++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL0=0x33;
	TH0=0xFE;
	
	//控制PWM波
	if(cnt < jd){
		sg90_con = 1;
	}else{
		sg90_con = 0;
	}
	
	if(cnt == 40){//爆表40次,经过了20ms
		cnt = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
		sg90_con = 1;
	}
		
}

C51_day4:定时器与中断_第11张图片

C51_day4:定时器与中断_第12张图片 

C51_day4:定时器与中断_第13张图片 

#include "reg52.h"

//距离小于10cm,D5亮,D6灭,反之相反现象

sbit D5 = P3^7;//根据原理图(电路图),设备变量led1指向P3组IO口的第7口
sbit D6 = P3^6;//根据原理图(电路图),设备变量led2指向P3组IO口的第6口
sbit Trig = P1^5;
sbit Echo = P1^6;

void Delay10us()		//@11.0592MHz
{
	unsigned char i;

	i = 2;
	while (--i);
}

void Time0Init()
{	
	TMOD &= 0xF0;		//设置定时器模式
	TMOD |= 0x01;
	TH0 = 0;
	TL0 = 0;
	//设置定时器0工作模式1,初始值设定0开始数数,不着急启动定时器
}
/*
十进制2左移1位,变成20。相当于乘以10
二禁止1左移1位,变成10(2)。相当于乘以2,左移8位,乘以2的8次方=256;*/

void startHC()
{
	Trig = 0;
	Trig = 1;
	Delay10us();
	Trig = 0;
}
void main()
{
	double time;
	double dis;
	
	Time0Init();
	
	while(1){
		//1. Trig ,给Trig端口至少10us的高电平
		startHC();
		//2. echo由低电平跳转到高电平,表示开始发送波
		while(Echo == 0);
		//波发出去的那一下,开始启动定时器
		TR0 = 1;
		//3. 由高电平跳转回低电平,表示波回来了
		while(Echo == 1);
		//波回来的那一下,我们开始停止定时器
		TR0 = 0;
		//4. 计算出中间经过多少时间
		time = (TH0 * 256 + TL0)*1.085;//us为单位
		//5. 距离 = 速度 (340m/s)* 时间/2
		dis = time * 0.017;
		if(dis < 10){
				D5 = 0;
				D6 = 1;
		}else{
				D5 = 1;
				D6 = 0;
		}
		//定时器数据清零,以便下一次测距
		TH0 = 0;
		TL0 = 0;
	}
}





4. 本节项目感应开关盖垃圾桶

4.1 项目概述

功能描述:

检测靠近时,垃圾桶自动开盖并伴随滴一声,2秒后关盖

发生震动时,垃圾桶自动开盖并伴随滴一声,2秒后关盖

按下按键时,垃圾桶自动开盖并伴随滴一声,2秒后关盖

硬件说明:

SG90舵机,超声波模块,震动传感器,蜂鸣器

接线说明:

舵机控制口P1.1;超声波Trig接P1.5,Echo接P1.6;蜂鸣器接P2.0口; 震动传感器接P3.2`口(外部中断0)

4.2 编程实现

开发步骤:

1. 舵机和超声波代码整合舵机用定时器0超声波用定时器1实现物体靠近后,自动开盖,2秒后关盖

2. 查询的方式添加按键控制

3. 查询的方式添加震动控制

4. 使用外部中断0配合震动控制

#include "reg52.h"

sbit D5       = P3^7;//根据原理图(电路图),设备变量led1指向P3组IO口的第7口
sbit D6       = P3^6;//根据原理图(电路图),设备变量led2指向P3组IO口的第6口
sbit SW1      = P2^1;
sbit Trig     = P1^5;
sbit Echo     = P1^6;
sbit sg90_con = P1^1;
sbit vibrate  = P3^2;
sbit beep     = P2^0;

char jd;
char jd_bak;
char cnt = 0;
char mark_vibrate = 0;

void Delay150ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	i = 2;
	j = 13;
	k = 237;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}


void Delay2000ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	i = 15;
	j = 2;
	k = 235;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}


void Delay10us()		//@11.0592MHz
{
	unsigned char i;

	i = 2;
	while (--i);
}

void Time0Init()
{
	//1. 配置定时器0工作模式位16位计时
	TMOD &= 0xF0;		//设置定时器模式
	TMOD |= 0x01;
	//2. 给初值,定一个0.5出来
	TL0=0x33;
	TH0=0xFE;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	//4. 打开定时器0中断
	ET0 = 1;
	//5. 打开总中断EA
	EA = 1;
}
void Time1Init()
{	
	TMOD &= 0x0F;		//设置定时器模式
	TMOD |= 0x10;
	TH1 = 0;
	TL1 = 0;
	//设置定时器0工作模式1,初始值设定0开始数数,不着急启动定时器
}

void startHC()
{
	Trig = 0;
	Trig = 1;
	Delay10us();
	Trig = 0;
}

double get_distance()
{
		double time;
		//定时器数据清零,以便下一次测距
		TH1 = 0;
		TL1 = 0;
	//1. Trig ,给Trig端口至少10us的高电平
		startHC();
		//2. echo由低电平跳转到高电平,表示开始发送波
		while(Echo == 0);
		//波发出去的那一下,开始启动定时器
		TR1 = 1;
		//3. 由高电平跳转回低电平,表示波回来了
		while(Echo == 1);
		//波回来的那一下,我们开始停止定时器
		TR1 = 0;
		//4. 计算出中间经过多少时间
		time = (TH1 * 256 + TL1)*1.085;//us为单位
		//5. 距离 = 速度 (340m/s)* 时间/2
		return  (time * 0.017);
}

void openStatusLight()
{
	D5 = 0;
	D6 = 1;
}
void closeStatusLight()
{
	D5 = 1;
	D6 = 0;
}

void initSG90_0()
{
	jd = 1;      //初始角度是0度,0.5ms,溢出1就是0.5,高电平
	cnt = 0;
	sg90_con = 1;//一开始从高电平开始
}

void openDusbin()
{
	char n;
	jd = 3; //90度 1.5ms高电平
	//舵机开盖
	if(jd_bak != jd){
		cnt = 0;
		beep = 0;
		for(n=0;n<2;n++)
			Delay150ms();
		beep = 1;
		Delay2000ms();
	}
	
	jd_bak = jd;
	
	
}

void closeDusbin()
{
	//关盖
	jd = 1; //0度
	jd_bak = jd;
	cnt = 0;
	Delay150ms();
}

void EX0_Init()
{
	//打开外部中断
	EX0 = 1;
	//低电平触发
	IT0 = 0;
}
void main()
{
	
	double dis;
	
	Time0Init();
	Time1Init();
	EX0_Init();
	
	//舵机的初始位置
	initSG90_0();
	
	while(1){
		//超声波测距
		dis = get_distance();
		if(dis < 10 || SW1 == 0 || mark_vibrate == 1){//如果小于10厘米,或者sw1按键被按下
				//开盖,灯状态,D5亮
				openStatusLight();
				openDusbin();
				mark_vibrate = 0;
		}else{
				//关盖,灯状态,D5灭
				closeStatusLight();
				closeDusbin();
		}
	}
}

void Time0Handler() interrupt 1
{
	cnt++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL0=0x33;
	TH0=0xFE;
	
	//控制PWM波
	if(cnt < jd){
		sg90_con = 1;
	}else{
		sg90_con = 0;
	}
	
	if(cnt == 40){//爆表40次,经过了20ms
		cnt = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
		sg90_con = 1;
	}
		
}

void Ex0_Handler() interrupt 0
{
	mark_vibrate = 1;
}





你可能感兴趣的:(C51,c++,c语言)