ZKP10.1 Recursive SNARKs, Aggregation and Accumulation

ZKP学习笔记

ZK-Learning MOOC课程笔记

Lecture 10: Recursive SNARKs, Aggregation and Accumulation (Dan Boneh)

10.1 Introduction and Applications of Recursive SNARKs

  • Recall: SNARK algorithms

    • A preprocessing SNARK is a triple (S, P, V):
      • S ( C ) S(C) S(C) -> public parameters (pp, vp) for prover and verifier
      • P ( p p , x , w ) P(pp, x, w) P(pp,x,w) -> proof π \pi π
      • V ( v p , x , π ) V(vp, x, \pi) V(vp,x,π) -> accept or reject
  • SNARK types

    • Groth16, Plonk-KZG: short proofs, but prover time is O(n log n)
    • FRI-based proofs (as well as Breakdown, Orion, Orion+, …): faster prover, but longer proofs
  • Two level SNARK recursion: proving knowledge of a proof
    ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第1张图片

    • Inner proof: prove P knows w
    • Outer proof: prove P’ knows π \pi π
  • Application

    • proof compression
      ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第2张图片

      • fast overall prover, and final proof is short(used to prove complex statements)
    • Knowledge sound
      ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第3张图片

    • Another difficulty: random oracles
      ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第4张图片

    • streaming proof generation
      ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第5张图片

      • zk-Rollup
        ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第6张图片

ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第7张图片

  • Layer-3 zk-Rollups
  • Incrementally Verifiable Computation (IVC)
    • Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space Efficiency [Valiant’08]
      ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第8张图片

ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第9张图片

- The statement at step number i

ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第10张图片

- Applications of IVC
  - Break a long computation into a sequence of small steps
    - F: one microprocessor step (Risc5, EVM, …)
    - Prover needs far less memory per step compared to a monolithic proof
  - A succinct proof that the current state of blockchain is correct

ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第11张图片

  - Verifiable Delay Functions (VDF): succinct proof that $s_n$ is equal to $H^{(n)}(s_0)$

在这里插入图片描述

  • Application 5: a market for ZK provers
    ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第12张图片

10.2 Choosing Curves to Support Recursion

  • Recursive SNARK
    ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第13张图片

  • Algebraic Groups
    ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第14张图片

    • F q l F_q^l Fql: an element F q l F_q^l Fql is a l l l elements tuple of F q F_q Fq
  • Recursive proofs: the arithmetic problem
    ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第15张图片

    • What to do?
      ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第16张图片

    • Solution: a chain of groups
      ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第17张图片

ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第18张图片

  • Even better: a cycles of groups [BCTV’14]
    ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第19张图片

ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第20张图片

  • Three types of cycles of length two
    ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第21张图片

ZKP10.1 Recursive SNARKs, Aggregation and Accumulation_第22张图片

你可能感兴趣的:(零知识证明,笔记,零知识证明,1024程序员节)