- 一文了解数字孪生是什么?数字孪生赋能哪些行业应用场景
橙子吖21
数字孪生区块链人工智能数学建模交互
导语数字孪生是物理系统向信息空间映射的关键技术,通过传感器和数据分析实现实时模拟和控制。与元宇宙不同,数字孪生强调物理对象的复现,是元宇宙的技术基础。NewIT技术支撑数字孪生的广泛应用,助力工业、城市等多领域实现虚拟与现实融合,促进经济社会创新发展。01什么是数字孪生?数字孪生,英文名为DiditalTwin(数字双胞胎),也成为数字映射、数字镜像。它的官方定义非常复杂,是这么说的:是充分利用物
- 数字孪生:物联+数据打造洞察世界新视角
CServer_01
数字孪生模拟仿真工业软件
引言:数字孪生是物理系统向信息空间映射的关键技术,通过传感器、数据分析、物联网,实现实时模拟和控制。新一代信息技术支撑数字孪生的广泛应用,使其在工业、城市、交通、医疗、水利等多领域实现虚拟与现实融合,促进经济社会创新发展。如果,您可以打造任何物品、场景、城市的另一种表达形式。就如同打开上帝视角一样,可以随时随地及时监控物它的性能,预测物品的状况,并提高其效率。这种实时、持续的信息更新、交换,使得您
- 什么是AI显卡,英伟达与AMD显卡的全面对比
wit_@
人工智能python算法deeplearning大数据网络
什么是AI显卡?AI显卡是专门为人工智能计算任务设计和优化的图形处理器(GPU)。相比传统显卡,AI显卡具备更强的计算能力、更高的并行处理效率以及针对深度学习、数据科学等领域的特殊硬件支持。在人工智能领域,尤其是深度学习中,训练和推理任务需要处理大量的矩阵运算,这正是GPU擅长的领域。AI显卡通过高度并行的架构,可以显著提升训练速度和模型性能,同时降低功耗和延迟。常见的AI显卡用途包括:深度学习模
- 详解AI大模型的主要指标与国内常见大模型对比分析
wit_@
人工智能AIGC语言模型ai大数据服务器
AI大模型的主要指标与国内常见大模型对比分析随着人工智能技术的快速发展,大模型(LargeAIModels)在自然语言处理、计算机视觉和多模态任务中取得了突破性进展。对于选择和评价AI大模型,不仅需要关注其功能,还要理解其关键指标和性能表现。本文将详细分析AI大模型的主要评价指标,并对国内常见大模型进行具体对比,提供实际数值和深度解析。一、AI大模型的主要指标AI大模型的性能和实用性通常通过以下指
- 计算机技术:冯·诺伊曼架构
InnoLink_1024
嵌入式操作系统架构
冯·诺伊曼架构(VonNeumannArchitecture)是由著名数学家和计算机科学家约翰·冯·诺伊曼(JohnvonNeumann)在20世纪40年代提出的一种计算机设计模型。它奠定了现代通用计算机设计的基础。1.核心思想冯诺伊曼架构的核心思想是存储程序的概念,即将指令和数据存储在同一个内存中,由中央处理器(CPU)依次读取和执行。具体来说,它包含以下关键特性:存储单元使用一个统一的存储设备
- 深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
wit_@
cnnpython机器学习深度学习scikit-learn
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术导语卷积神经网络(CNN)是现代深度学习领域中最重要的模型之一,特别在计算机视觉(CV)领域具有革命性的影响。无论是图像分类、目标检测,还是人脸识别、语音处理,CNN都发挥了举足轻重的作用。随着技术的不断发展,CNN已经成为了解决众多实际问题的核心工具。但对于许多人来说,CNN仍然是一个相对复杂的概念,尤其是初学者可能会被其背后的数学原
- 从零开始的 AI Infra 学习之路
SSS不知-道
MLSys人工智能深度学习pytorch
从零开始的AIInfra学习之路文章目录从零开始的AIInfra学习之路一、概述二、AI算法应用2.1机器学习2.2深度学习2.3LLM三、AI开发体系3.1编程语言四、AI训练框架&推理引擎4.1PyTorch4.2llama.cpp4.3vLLM五、AI编译&计算架构5.1CUDA5.2CANN六、AI硬件&体系结构6.1INVIDIAGPU6.2AscendNPU一、概述AIInfra(AI
- python 微信群发_Python-Pyqt5编写微信群发软件
weixin_39624816
python微信群发
环境:Python3.7,Eric6,Pyqt5Python库:wxpywxpy在itchat的基础上,通过大量接口优化提升了模块的易用性,并进行丰富的功能##扩展。成品图微信群聊功能点:单个好友,单个群发送,以及全部好友,全部群聊发送待完善:图片,文件发送(不想玩了,有兴趣的自己玩)按钮样式border-style:none;border:1pxsolid#3f3f3f;padding:5px;
- 算法打卡:第十一章 图论part02
菜鸟求带飞_
数据结构与算法数据结构java算法图论
今日收获:岛屿数量(深搜),岛屿数量(广搜),岛屿的最大面积1.岛屿数量(深搜)题目链接:99.岛屿数量思路:二维遍历数组,先判断当前节点是否被访问过&是否是陆地。如果满足条件则岛屿数量加1,再通过深度优先遍历将其上下左右的陆地设置为访问过。注意:每次传入dfs函数的节点都是符合结果收集条件的,所以不用写结束条件。也可以将判断条件(访问过/不是陆地)写入dfs的结束条件中。方法:importjav
- 【深度学习】Huber Loss详解
小小小小祥
深度学习人工智能算法职场和发展机器学习
文章目录1.HuberLoss原理详解2.Pytorch代码详解3.与MSELoss、MAELoss区别及各自优缺点3.1MSELoss均方误差损失3.2MAELoss平均绝对误差损失3.3HuberLoss4.总结4.1优化平滑4.2梯度较好4.3为什么说MSE是平滑的1.HuberLoss原理详解HuberLoss是一种结合了MSE(均方误差)与MAE(平均绝对误差)的损失函数,旨在克服两者的
- 【YOLOV8】YOLOV8模型训练train及参数详解
小小小小祥
YOLO
介绍训练深度学习模型涉及为其提供数据并调整其参数,以便它能够做出准确的预测。UltralyticsYOLOv8的训练模式专为有效、高效地训练目标检测模型而设计,充分利用现代硬件的能力。本指南旨在涵盖使用YOLOv8强大功能集训练自定义模型所需的所有细节,帮助你快速入门。为什么选择UltralyticsYOLO进行训练?高效性:无论是单GPU设置还是跨多个GPU扩展,都能充分利用你的硬件。多功能性:
- 【YOLOV8】目标检测任务中应该如何选择YOLOV8n/s/m/l/x模型及输入尺寸大小
小小小小祥
YOLO目标检测人工智能
问题描述:YOLOV8作为目前主流的深度学习网络,支持图像分类、目标检测、实例分割、姿态检测、旋转目标检测等功能。对于目标检测任务官方提供了n/s/m/l/x五个模型,我们在使用YOLOV8模型进行自己任务训练时,应该如何选择YOLOV8的模型以及输入尺寸大小呢?YOLOV8官网:https://github.com/ultralytics/ultralyticsYOLOV8n/s/m/l/x信息
- 基于邻接表的深度优先遍历 (非递归)
m0_57741101
深度优先搜索非递归邻接表图遍历栈
关键:利用栈来保存已经搜索到的顶点,利用top来返回上一个顶点。描述一个连通图采用邻接表作为存储结构。设计一个算法,实现从顶点v出发的深度优先遍历的非递归过程。输入多组数据,每组m+2数据行。第一行有两个数字n和m,代表有n个顶点和m条边。顶点编号为1到n。第二行到第m+1行每行有两个整数h和k,代表边依附的两个顶点。第m+2行有一个整数d,代表从d开始遍历。当n和m都等于0时,输入结束。输出每组
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- 体育比分网站搭建的常规流程参考教程
翱翔的猪脑花
信息可视化
一、项目策划与需求分析在启动体育比分直播网站搭建项目前,首要任务是对市场进行深入的研究与分析,考察现有竞品的优势Atlaslive与CAF与不足,找准目标用户群体的需求痛点。例如,用户可能关注实时比分更新的速度与精确度,全面的赛事覆盖范围,深度的数据分析,以及便利的社交互动功能等。基于此,明确网站的定位和特色,设计出包括实时比分直播、赛事前瞻与回顾、详尽数据分析、体育新闻报道、互动社区等在内的核心
- 深入解读ChatGPT的工作原理及底层逻辑
NAR_鱼丸
ChatGPT程序人生
ChatGPT的工作原理和底层逻辑可以从多个方面进行解读,主要包括其基本原理、核心技术、训练过程以及应用能力。工作原理涉及了深度学习模型、自然语言处理技术和文本生成算法等多个方面。通过预训练和微调,模型能够理解语言的语法和语义,并能够根据上下文生成符合语境的文本回复。基本原理ChatGPT是一种基于自然语言处理(NLP)和深度学习技术的聊天机器人。其基本原理是使用大量文本数据来训练深度神经网络模型
- 04~防火墙概念及登录
jnprlxc
网络运维安全学习方法改行学it职场和发展
一、防火墙概念1、概念来源防火墙的概念来源于现实生活中的防火门,在大型的商超、银行等公共场所中,我们经常看到防火门,其作用就是如果发生了火灾,通过锁住这个门用来隔离火情,防止火势蔓延,进而保护门内财产的安全。防火墙也是如此,它是对网络的访问行为进行控制的设备,通常部署在网络边界(如局域网和互联网、局域网中各功能子网、数据中心边界等),保护一个网络(通常我们所说的局域网)不受另一个网络(如互联网)的
- 厉害了,LSTM+Transformer王炸创新,精准度又高了!
马拉AI
LSTMtransformer
【LSTM+Transformer】作为一种混合深度学习模型,近年来在学术界和工业界都受到了极大的关注。它巧妙地融合了长短期记忆网络(LSTM)在处理时序数据方面的专长和Transformer在捕捉长距离依赖关系上的优势,从而在文本生成、机器翻译、时间序列预测等多个领域取得了突破性的进展。这种创新的结合不仅提升了模型的预测精度,还优化了性能和训练效率,使其在序列分析任务中展现出卓越的能力。例如,最
- 论C++和Python哪个更优越(一)
UnwaterBreathing
C++PythonC++菜鸟教程c++开发语言python
一.前言C++,C语言的2.0版本,开发语言中的一把利剑Python,多种开发语言的结晶,代码界的后起之秀----------------------------------------------------------------------它们两个到底谁更强?今天我将从多个角度给你分析.TIPS:以下内容仅个人观点,可能会不全面,不喜勿喷.速度速度,是判定一个开发语言很不错的标准1.C++我
- 使用 Java 和 FreeMarker 实现自动生成供货清单,动态生成 Word 文档,简化文档处理流程。
熊文豪
javaapachefreemarker
在上一篇博客中主要是使用SpringBoot+ApachePOI实现了BOM物料清单Excel表格导出,详见以下博客:SpringBoot+ApachePOI实现Exc()el导出:BOM物料清单生成器(支持中文文件名、样式美化、数据合并)目录引言项目结构源代码展示1.WordController2.WordUtil工具类3.FreeMarker模版4.POM依赖WordController类深度
- 构建高效GPU算力平台:挑战、策略与未来展望
Mr' 郑
gpu算力
引言随着深度学习、高性能计算和大数据分析等领域的快速发展,GPU(图形处理器)因其强大的并行计算能力和浮点运算速度而成为首选的计算平台。然而,随着模型规模的增长和技术的进步,构建高效稳定的GPU算力平台面临着新的挑战。本文旨在探讨这些挑战、应对策略以及对未来发展的展望。当前挑战算力分配与资源优化在多用户共享GPU集群的环境下,合理分配计算资源并确保每个任务能够高效运行是一项挑战。这不仅涉及到硬件资
- 详解深度学习中的Dropout
nk妹妹
深度学习深度学习人工智能
Dropout是一种在神经网络训练中常用的正则化技术,其操作是在每次训练迭代中随机“丢弃”一部分神经元(即将其输出置为零)。以下是对这一操作的详细解释:一、基本思想Dropout的基本思想是减少神经元之间的复杂共适应关系,迫使网络在训练过程中不依赖于特定的神经元子集。这有助于增加模型的泛化能力,防止过拟合。二、具体实现随机选择:在每次训练迭代中,以一定的概率p(通常设定为0.2到0.5之间)随机选
- Java项目重构总结
Dson2020
Java
一、方案落地1、在现实生活中,能找到许多与软件行为相似的场景,比如项目重构与房子重建是比较类似,简单例子如下:比如,一道参差不齐的墙,怎么变成整齐的墙,一般来说有以下两种方案方案一:直接推到,新买砖,重新砌墙,通常会遇到难以找到适合砌墙边的砖头,砌墙工通常会破坏新砖来到达目的方案二:拆墙,把墙砖一个个分解,重新利用,再加上新买少量砖,完美解决难以对齐的问题,而不用去破坏新砖2、上述例子其实对应的是
- C++归并排序算法深度解析
小小的博客
排序算法排序算法算法数据结构c++开发语言
引言归并排序(MergeSort)是一种常用的排序算法,它采用了分治(DivideandConquer)的策略,将一个待排序的序列分解成若干个小的子序列,分别进行排序,再将这些已经排好序的子序列合并成一个完整的有序序列。归并排序具有很好的稳定性,时间复杂度为O(nlogn),在实际应用中表现优秀。本文将详细介绍归并排序算法的实现原理、C++代码实现以及在实际应用中的优化策略。归并排序算法原理归并排
- 【机器学习实战中阶】音乐流派分类-自动化分类不同音乐风格
精通代码大仙
数据挖掘深度学习python机器学习分类自动化人工智能数据挖掘深度学习
音乐流派分类–自动化分类不同音乐风格在本教程中,我们将开发一个深度学习项目,用于自动化地从音频文件中分类不同的音乐流派。我们将使用音频文件的频率域和时间域低级特征来分类这些音频文件。对于这个项目,我们需要一个具有相似大小和相似频率范围的音频曲目数据集。GTZAN流派分类数据集是音乐流派分类项目中最推荐的数据集,并且它是为了这个任务而收集的。音乐流派分类器模型音乐流派分类关于数据集:GTZAN流派收
- 深度强化学习(DRL)原理与代码实战案例讲解
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的演进:从符号主义到连接主义人工智能(AI)的发展经历了漫长的历程,从早期的符号主义到如今的连接主义,标志着人工智能从基于规则的推理演变到基于数据的学习。符号主义AI试图通过逻辑和符号系统来模拟人类的思维过程,而连接主义AI则侧重于构建类似于人脑神经网络的结构,通过大量数据进行训练,从而实现智能。1.2强化学习:智能体与环境的互动强化学习(ReinforcementLea
- 深度剖析 DeepSeek V3 技术报告:架构创新与卓越性能表现
微凉的衣柜
科技头条人工智能大模型语言模型
随着人工智能(AI)技术的不断发展,各种大规模语言模型(LLM)层出不穷,DeepSeekV3作为其中的一员,凭借其出色的性能表现和创新的架构设计,吸引了广泛关注。本文将通过对官方发布的DeepSeekV3技术报告的深入解析,从多个维度剖析DeepSeekV3如何通过先进的技术手段,在保持性能卓越的同时优化计算和内存开销。一、性能卓越,超越同行DeepSeekV3在多个权威基准测试中展现了强大的性
- 20250118 PPT画的论文插图如何导出高分辨率图片:修改电脑注册表
HI_Forrest
论文写作powerpoint论文
在PowerPoint中导出高分辨率图片的步骤如下:1.调整幻灯片尺寸:打开PowerPoint,点击“设计”选项卡。在“自定义”区域选择“幻灯片大小”。选择“自定义幻灯片大小”。在弹出的对话框中,将幻灯片的尺寸设置为更大的数值(比如宽度设置为40英寸,高度设置为30英寸),这有助于提高导出图片的分辨率。2.导出为图片:完成幻灯片设计后,点击“文件”菜单。选择“导出”。选择“更改文件类型”中的“P
- AI歌手会成为主流吗?
网络安全我来了
IT技术人工智能
AI歌手会成为主流吗?在如今这个科技迅猛发展的时代,AI歌手渐渐走入我们的视野。或许你会想,AI真的能够唱歌,它的歌声能与真实歌手相媲美吗?让我们一起探索这个引人入胜的主题,看看AI歌手的发展现状、优缺点,以及它在音乐行业的未来前景。1.AI歌手的发展现状1.1技术背景我们处于一个机器学习和深度学习技术飞速发展的时代,AI歌手的诞生并非偶然。通过收集和分析大量的音乐数据,AI能够学习并模仿特定歌手
- 无效数据,你会怎么处理?
网络安全我来了
IT技术无效数据
如何处理无效数据?无效数据就像海洋中的漂流物,易被忽视,却可能对你的数据分析产生深远的影响。在这个瞬息万变的数字世界中,数据已经成为了决策的核心。但你是否曾想过,无效数据会如何悄然破坏你的洞察力?在这篇文章中,我们将深入探讨如何识别和处理无效数据,确保你的分析能够真正反映现实的情况。无效数据的定义与重要性什么是无效数据?无效数据是指在数据集中不符合预期的数据,它可能是错误的、不完整的、重复的,甚至
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源