- orcal数据库与国产数据库 gabse 8a的数据库语法函数差异
Shawsw
数据库oracle
orcal数据库与国产数据库GBase8a的数据库语法函数差异,工作中遇到的,仅作参考,有错误欢迎指正orcal数据库与国产数据库gabse8a的数据库语法函数差异语法或函数说明rownumgbase没有rownum,如果设计到分页可以使用Limit,用作排序可使用row_number()over()代替,但gbase不支持connectby,涉及connectby需要对语句进行改写(修正:可支持
- 【Vue3笔记01】如何使用Vue3和Vite搭建前端项目的基础开发环境
Mr.小朱同学
Web前端笔记前端笔记vue.jsVue3Vite搭建项目环境
这篇文章,主要介绍如何使用Vue3和Vite搭建前端项目的基础开发环境【知识星球】。目录一、搭建项目环境1.1、前提条件1.2、开始搭建1.3、下载依赖1.4、启动工程一、搭建项目环境目前前端开发中,使用最多的就是Vue.js框架,目前Vue.js框架常用的有Vue2、Vue3两个版本,Vue3和Vue2在语法上还是存在很大的差异的,这里我将介绍如何搭建Vue3开发环境。1.1、前提条件在创建Vu
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- DeepSeek多语言670亿参数高效创作解析
智能计算研究中心
其他
内容概要本文聚焦DeepSeek系列模型的核心技术突破与应用价值,通过解析其混合专家架构(MoE)的设计逻辑与670亿参数的规模化优势,揭示其在多语言处理、视觉语言理解及代码生成领域的创新表现。从技术特性出发,文章将对比OpenAI等主流模型的性能差异,探讨参数效率与计算资源优化如何支撑低成本、高精度的内容生成场景,例如学术论文写作、智能选题规划及SEO关键词拓展。同时,通过分析DeepSeekP
- RocketMQ 和 Kafka
重生之我在成电转码
rocketmqKafkajava消息队列
✅RocketMQ和Kafka是两种非常流行的分布式消息队列系统,它们广泛用于大规模、高并发的消息传递和事件驱动架构中。虽然它们都属于消息队列,但在设计理念、特性和应用场景上有一些差异。接下来,我们来深入分析这两者的区别与优缺点。一、Kafka和RocketMQ的概述✅1️⃣KafkaKafka是一个分布式的流处理平台,由Apache软件基金会开发,最初由LinkedIn开发并开源。Kafka主要
- [科普] EEPROM、NOR Flash、NAND Flash 是常用的非易失性存储器(断电后保留数据)(DS-R1生成)
兴趣使然_
嵌入式硬件相关开发语言
在电子系统中,EEPROM、NORFlash、NANDFlash是常用的非易失性存储器(断电后保留数据),但它们在性能、结构、用途上有显著差异。以下是核心对比:1.EEPROM(ElectricallyErasableProgrammableROM)写入方式支持按字节擦写,无需全片擦除即可修改单个字节数据。容量通常为几KB到几MB,适合存储少量数据(如设备配置参数、校准数据)。速度写入速度较慢(m
- [科普] SRAM 和 PSRAM 易失性存储器(断电后数据丢失)(由DS-R1生成)
兴趣使然_
嵌入式硬件相关fpga开发
在易失性存储器(断电后数据丢失)中,SRAM和PSRAM是两种常见的高速存储方案,但它们的技术原理和应用场景有明显差异。以下是详细对比和扩展说明:1.SRAM(StaticRandom-AccessMemory)核心特性静态存储:通过6晶体管(6T)锁存结构存储数据,无需外部刷新电路,数据在通电时永久保持。速度:读写速度极快(纳秒级延迟),远高于DRAM或Flash,常见于高速缓存场景。功耗:静态
- 熔断和降级的区别,具体使用场景有哪些?
蒂法就是我
springjava后端
熔断与降级的核心区别在于触发条件和应用目标,具体差异及使用场景如下:一、核心区别对比维度熔断降级触发原因下游依赖服务故障(如超时、异常率过高)触发系统整体负载过高或流量洪峰管理目标层级框架级保护(无业务优先级区分)业务级调整(需区分核心/非核心功能)实现方式自动触发(如Hystrix断路器模式)手动配置或自动触发(需预设fallback逻辑)恢复机制自动探测依赖恢复后逐步放量(半开状态)需人工介入
- YOLO11改进-模块-引入频率谱动态聚合模块FSDA 去除噪声
一勺汤
YOLOv11模型改进系列目标检测魔改模块YOLOYOLOv11YOLOv11改进改进
在图像去雾领域,深度学习在白天图像去雾方面成果显著,但夜间雾图研究较少。夜间雾图面临诸多挑战,其中包括雾、辉光和噪声因多个低强度有源彩色光源而具有复杂特性,以及模拟与真实数据的域差异导致的亮度问题。为解决这些,我们使用FSDA模块,处理频率不一致特性。FSDA先对频谱信息聚合,再计算通道权重并应用,最后映射回空间域,以此优化频谱信息,使模型更好处理复杂干扰。本文将其与YOLOv11相结合,增强YO
- React中useEffect和useLayoutEffect的区别
CreatorRay
前端面试reactreact.js前端面试
在最近一次面试中被问到,我印象中好像从来没用过useLayoutEffect,就没答上来。但是看名字应该是跟布局相关的,而且跟useEffect会有类似的作用。在React中,useEffect和useLayoutEffect都是用于处理副作用的Hooks,但它们的执行时机和对渲染流程的影响有显著区别。以下是两者的核心差异及使用场景:公众号:Code程序人生,个人网站:https://creato
- RAG 企业级应用落地框架细节差异对比
一顿码
架构人工智能python数据挖掘知识图谱语言模型
—1—什么是RAG?RAG检索增强生成本质上来讲,就三件事情:第一、Indexing索引。即如何更有效地存储知识。第二、Retrieval检索。即在庞大的知识库中,如何筛选出少量的有益知识,供大模型参考。第三、Generation生成。即如何将用户的提问与检索到的知识相结合,使得大模型能够生成有价值的回答。这三个步骤表面上看似乎并不复杂,然而在RAG从构建到实际部署的整个流程中,包含了众多精细且复
- 数据重放和数据倒灌的意思一样吗
赛恩斯
android
数据重放与数据倒灌在机制上有相似性,但设计目的和适用场景存在本质差异:1.核心定义对比维度数据倒灌数据重放技术场景LiveData特有的现象,新观察者自动接收最后一次数据更新78通用异步流机制(如Flow的StateFlow/SharedFlow),允许新订阅者获取历史数据45设计意图LiveData的默认行为,旨在确保观察者始终获取最新数据38开发者主动配置的数据保
- numpy学习笔记10:arr *= 2向量化操作性能优化
宁宁可可
#机器学习#Python基础与进阶numpy学习笔记
numpy学习笔记10:arr*=2向量化操作性能优化在NumPy中,直接对整个数组进行向量化操作(如arr*=2)的效率远高于显式循环(如foriinrange(len(arr)):arr[i]*=2)。以下是详细的解释:1.性能差异的原理(1)底层实现不同显式循环(错误示范):Python的for循环是解释执行的,每次迭代需要动态解析变量类型、执行函数调用等操作。对每个元素的操作会触发多次Py
- 集成学习(Ensemble Learning)基础知识1
代码骑士
#机器学习集成学习机器学习人工智能
文章目录一、集成学习1、基本概念2、回顾:误差的偏差-方差分解3、为什么集成学习有效?4、基学习器:“好而不同”5、集成学习的两个基本问题(1)如何训练出具有差异性的多个基学习器?(2)如何将多个基学习器的预测结果集成为最终的强学习器预测结果?二、自助法(Bagging)1、Bagging2、BootstrapBootstrap采样的数学性质3、Bagging:集成学习的两个基本问题(1)如何训练
- JVM内存溢出(OOM)的场景
KBkongbaiKB
jvmjava开发语言
一、JVM内存结构快速复盘1.1运行时数据区核心架构JVMMemory线程私有区线程共享区程序计数器虚拟机栈本地方法栈堆内存方法区/元空间1.2各区域默认容量(JDK8)内存区域默认最大值调整参数堆内存(Heap)物理内存1/4-Xmx元空间(Metaspace)无限制(受物理内存约束)-XX:MaxMetaspaceSize栈内存(Stack)1MB(不同OS有差异)-Xss直接内存(Direc
- 物联网 - JetLinks与ThingsBoard技术选型对比
天机️灵韵
物联网开源项目物联网
JetLinks与ThingsBoard作为两款主流的开源物联网平台,在技术架构、功能特性及适用场景上存在显著差异。以下从技术选型的关键维度进行深度对比分析:JetLinks与ThingsBoard物联网平台的深度技术对比及选型建议,综合多个维度分析两者的核心差异与适用场景:一、技术架构与性能技术栈JetLinks:基于Java8、SpringBoot2.x、WebFlux、Netty等,采用响应
- C语言的五套标准:C89、C99、C11、C17和C23(新手必看)
xiecoding.cn
c语言开发语言C语言入门C++C/C++数据结构
作为一门经典的编程语言,C语言标准随着时间不断演进,以适应新的编程需求和技术发展。本文将详细介绍C语言的五套标准:C89、C99、C11、C17和C23。我们将从每套标准的背景、主要特性入手,逐步深入,帮助你理解它们之间的差异以及对编程实践的影响。C89:奠定基础的第一个标准C89,也称为ANSIC,是C语言的第一个正式标准,由美国国家标准协会(ANSI)于1989年发布,后在1990年被国际标准
- 基于图像比对的跨平台UI一致性校验工具开发全流程指南——Android/iOS/Web三端自动化测试实战
追寻向上
uiandroidios
一、需求背景与方案概述1.1为什么需要跨平台UI校验?在移动互联网时代,同一产品需覆盖Android、iOS和Web三端。由于不同平台的开发框架(如Android的MaterialDesign与iOS的Cupertino风格)及渲染引擎差异,UI界面易出现以下问题:布局错位:按钮位置偏移、文本换行不一致视觉差异:颜色色差、字体粗细不同交互逻辑冲突:滑动方向、弹窗动画不一致传统人工测试效率低且易遗漏
- redis中jedis和lettuce pool的区别,那个更好,使用范围更广
青春不流名
redisbootstrap前端
在Redis的Java客户端中,Jedis和Lettuce是两种最常用的客户端库,它们都支持连接池(JedisPool和LettuceConnectionPool),但在设计和特性上有显著差异。下面我将详细对比它们的特点,帮助你更好地选择适合的库。1.同步vs异步Jedis:是一个同步的Redis客户端库。每次操作都会阻塞当前线程,直到Redis响应完成。这使得它易于理解和使用,但如果Redis响
- 教师杂志教师杂志社教师编辑部2025年第3期目录
QQ296078736
人工智能
德育与管理基于差异化教学的留学生跨文化适应能力的提升策略研究柯思琼;5-7高校思政教育第一课堂与第二课堂双向育人模式构建策略研究章迎春;李聪;8-10皖西红色文化融入地方开放大学思想政治教育的策略探究马陈晨;王文韬;陈瑞丹;11-13工匠精神融入中职英语专业学生职业素养培养的策略研究吴小燕;14-16高质量发展视域下高中政治教学创新路径研究汪文刚;17-19红色文化教育融入幼儿体育游戏的路径研究陆
- Eaglewood-开发单片机函数封装技巧
OverflowSummer
嵌入式泛用知识学习笔记单片机嵌入式硬件
目录一、核心原则:(一)、高内聚低耦合:每个函数只做一件事,减少依赖。(二)、接口清晰:隐藏实现细节。(三)、可配置性:通过宏、结构体或回调支持灵活扩展。(四)、可移植性:抽象硬件差异,降低移植成本。一、模块化设计五、宏定义配置参数二、在头文件中宏定义函数三、使用结构体封装硬件配置四、回调函数机制六、错误处理与返回值封装七、硬件抽象层(HAL)八、静态函数限制作用域九、版本兼容性设计十、使用con
- 3DXML 与 SOLIDWORKS 格式转换:技术协同及迪威模型方案
3D小将
迪威模型联讯软件SolidWorks模型UG模型Rhino模型SketchUp模型catia模型stl模型stp模型
一、引言在产品设计的前沿领域,3DXML与SOLIDWORKS作为主流格式,虽各有所长,但因格式差异,常成为数据流通与协作的阻碍。对于技术人员和学生党而言,掌握二者间的转换技术,不仅能提升设计效率,更是参与复杂项目协作的必备技能。迪威模型在线转换功能,凭借其先进技术,为这一转换难题提供了高效解决方案。二、3DXML与SOLIDWORKS格式基础(一)3DXML3DXML由达索系统精心打造,其核心压
- 记录学习的第七天
xiufeia
学习
还是老规矩,力扣的每日一题这道题我的思路是有了,不过在实现思路的时候遇到很多问题我首先也是想到了用一个哈希表之类的把出现次数最多的元素依次记录下来,然后再进行分配,不过由于我的STL不太熟练,所以我用的方法存在问题我的思路与题解的思路存在最大的差异就是,题解是根据每一行来存的,而我想的是每一列进行存元素。接着写了两道滑动窗口的题。滑动窗口需要注意的就是外循环扩展右指引,内循环扩展左指引,然后进行出
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- deepseek 对于 Web 前端过去,现在,未来的看法!称未来可能不叫前端工程师...
CoderBin_
与deepseek的对话前端
一、你对于过去的web前端有什么看法?对早期的Web前端开发(大致在2000年代至2010年代初),可以总结出以下几个关键看法:1.技术原始,但充满探索精神基础技术简单:主要依赖HTML、CSS和原生JavaScript,缺乏现代框架和工具链的支持。兼容性噩梦:不同浏览器(尤其是IE6/7)的渲染差异极大,开发者需要大量Hack代码(如条件注释、CSS滤镜)来适配。创新萌芽:AJAX(2005年)
- 芯片:CPU和GPU有什么区别?
InnoLink_1024
AGI人工智能人工智能aiagigpu算力
CPU(中央处理器)和GPU(图形处理单元)是计算机系统中两种非常重要的处理器,它们各自有不同的设计理念、架构特点以及应用领域。下面是它们之间的一些主要差异:1.设计目的与应用领域CPU:设计目的是为了处理广泛的计算任务,包括操作系统管理、应用程序运行和基本的输入输出处理等。它处理的是复杂的、通用的计算任务,通常包括控制逻辑、内存管理等。GPU:设计目的是为了处理图形和并行计算任务。最初是为图形渲
- Python列表与元组的深度剖析
jijihusong006
程序pythonwindows开发语言
Python列表与元组的深度剖析:从底层实现到应用场景的全方位对比一、核心差异概览Python教程https://pan.quark.cn/s/7cefe3163f45传送代资料库https://link3.cc/aa99特性列表(List)元组(Tuple)可变性可变(Mutable)不可变(Immutable)语法表示方括号[]圆括号()内存占用较大(动态数组结构)较小(静态数组结构)哈希支持
- Python 模拟鼠标轨迹算法
a485240
鼠标轨迹计算机外设
一.鼠标轨迹模拟简介传统的鼠标轨迹模拟依赖于简单的数学模型,如直线或曲线路径。然而,这种方法难以捕捉到人类操作的复杂性和多样性。AI大模型的出现,使得能够通过深度学习技术,学习并模拟更自然的鼠标移动行为。二.鼠标轨迹算法实现AI大模型通过学习大量的人类鼠标操作数据,能够识别和模拟出自然且具有个体差异的鼠标轨迹。以下是实现这一技术的关键步骤:数据收集:收集不同玩家在各种游戏环境中的鼠标操作数据,包括
- 技术转管理,需要克服的4大硬伤!
项目经理刘湖南
职场和发展
许多技术人员都会主动规划自己的职业发展路径,而晋升管理岗,向项目经理或者产品经理转型,是大多数技术人才的选择。然而,技术思维和管理思维存在较大的差异。从技术转管理,有四大难点。一、角色转换难技术人员作为执行层,专注的是技术实现与细节把控,只要专心做好自己份内的事即可。比如,开发工程师要保证代码质量,运维工程师负责系统稳定性。而项目经理或者产品经理作为组织者,需要建立全局视角和系统思维,带领团队成员
- 2025年亚马逊多店铺运营的三大核心策略
跨境猫小妹
跨境电商大数据人工智能业界资讯经验分享
2025年亚马逊多店铺运营的三大核心策略随着跨境电商市场的日趋成熟,亚马逊卖家面临的竞争加剧,特别是拥有多个店铺的商家,更需要优化运营策略,提高盈利能力。进入2025年,亚马逊多店铺运营不再是简单的铺货,而是需要更精细的管理与系统化的运营。本篇文章将为你解析三大核心策略,助你高效管理多个店铺,提升市场竞争力。一、精细化选品与差异化布局1.数据驱动选品,提升市场竞争力多店铺运营的核心在于合理配置资源
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc