f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上的情况 | 原函数是否存在 | 是否可积 |
---|---|---|
连续无间断 | 是,且为 F ( x ) = ∫ a x f ( t ) d t F(x) = \int^x_a f(t)dt F(x)=∫axf(t)dt | 是 |
可去间断点(有限个) | 否 | 是 |
跳跃间断点(有限个) | 否 | 是 |
无穷间断点 | 否 | 可能 |
振荡间断点 | 可能 | 可能 |
设 F ( x ) = ∫ a x f ( t ) d t , x ∈ [ a , b ] F(x) = \int^x_a f(t)dt, x \in [a,b] F(x)=∫axf(t)dt,x∈[a,b],则有:
f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上的情况 | 是否可积 | 面积 F ( x ) F(x) F(x) | F ( x ) F(x) F(x) 是否为 f ( x ) f(x) f(x) 的原函数 | F ( x ) F(x) F(x) 是否在 x = x 0 x=x_0 x=x0 连续 | F ( x ) F(x) F(x) 是否在 x = x 0 x=x_0 x=x0 可导 |
---|---|---|---|---|---|
连续无间断 | 是 | F ( x ) = ∫ a x f ( t ) d t F(x) = \int^x_a f(t)dt F(x)=∫axf(t)dt | 是 | 是 | 是 |
存在可去间断点 x = x 0 x=x_0 x=x0 | 是 | F ( x ) = ∫ a x f ( t ) d t F(x) = \int^x_a f(t)dt F(x)=∫axf(t)dt | 否 | 是 | 是 |
存在跳跃间断点 x = x 0 x=x_0 x=x0 | 是 | F ( x ) = { ∫ a x f ( t ) d t , x ≤ x 0 ∫ a x 0 f ( t ) d t + ∫ x 0 x f ( t ) d t , x > x 0 F(x) = \begin{cases} \int^x_a f(t)dt, & x \leq x_0 \\ \int^{x_0}_a f(t)dt + \int^x_{x_0} f(t)dt, & x > x_0 \end{cases} F(x)={∫axf(t)dt,∫ax0f(t)dt+∫x0xf(t)dt,x≤x0x>x0 | 否 | 是 | 否 |
当 f ( x ) ≥ g ( x ) , x ∈ [ a , b ] f(x) \geq g(x), x \in [a,b] f(x)≥g(x),x∈[a,b] 时,所围面积为
S = ∬ D d x d y = ∫ a b d x ∫ g ( x ) f ( x ) d y = ∫ a b [ f ( x ) − g ( x ) ] d x S = \iint \limits_{D} dxdy = \int^b_a dx \int^{f(x)}_{g(x)} dy = \int^b_a [f(x)-g(x)] dx S=D∬dxdy=∫abdx∫g(x)f(x)dy=∫ab[f(x)−g(x)]dx
设曲线方程 y = f ( x ) , x ∈ [ a , b ] y=f(x), x \in [a,b] y=f(x),x∈[a,b] 由参数方程 { x = x ( t ) y = y ( t ) , t ∈ [ α , β ] \begin{cases} x=x(t) \\ y=y(t) \end{cases}, t \in [\alpha,\beta] {x=x(t)y=y(t),t∈[α,β] 确定,则所围曲边梯形的面积为
S = ∬ D d x d y = ∫ a b d x ∫ 0 f ( x ) d y = ∫ a b f ( x ) d x = ∫ α β y ( t ) x ′ ( t ) d t S = \iint \limits_{D} dxdy = \int^b_a dx \int^{f(x)}_{0} dy = \int^b_a f(x) dx = \int^{\beta}_{\alpha} y(t) x'(t) dt S=D∬dxdy=∫abdx∫0f(x)dy=∫abf(x)dx=∫αβy(t)x′(t)dt
当 r 2 ( θ ) ≥ r 1 ( θ ) , θ ∈ [ α , β ] r_2(\theta) \geq r_1(\theta), \theta \in [\alpha,\beta] r2(θ)≥r1(θ),θ∈[α,β] 时,所围面积为
S = ∬ D d x d y = ∬ D r d r d θ = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) r d r = 1 2 ∫ α β [ r 2 2 ( θ ) − r 1 2 ( θ ) ] d θ S = \iint \limits_{D} dxdy = \iint \limits_{D} rdrd\theta = \int^{\beta}_{\alpha} d\theta \int^{r_2(\theta)}_{r_1(\theta)} rdr = \frac{1}{2} \int^{\beta}_{\alpha} [r_2^2(\theta)-r_1^2(\theta)] d\theta S=D∬dxdy=D∬rdrdθ=∫αβdθ∫r1(θ)r2(θ)rdr=21∫αβ[r22(θ)−r12(θ)]dθ
极坐标方程的角度定限问题
【 k k k 叶玫瑰线】极坐标下的形式为 r = a sin k θ r = a\sin k \theta r=asinkθ 或 r = a cos k θ r = a\cos k \theta r=acoskθ。参数为 k k k 的玫瑰线,在 [ 0 , 2 π ] [0,2\pi] [0,2π] 上会形成 2 k 2k 2k 个花瓣,其中 k k k 个极径为正, k k k 个极径为负。当 k k k 为奇数时, k k k 个正极径花瓣和 k k k 个负极径花瓣两两重叠,实际只有 k k k 个花瓣,此时可认为极径永为正。
【例 1】求 r = sin 3 θ r=\sin 3 \theta r=sin3θ 所围面积。
【解】注意有 θ ∈ [ 0 , 2 π ] ⇒ 3 θ ∈ [ 0 , 6 π ] \theta \in [0, 2\pi] \Rightarrow 3\theta \in [0, 6\pi] θ∈[0,2π]⇒3θ∈[0,6π]。
因为 r = sin 3 θ ≥ 0 r = \sin 3 \theta \geq 0 r=sin3θ≥0,所以有 3 θ ∈ [ 0 , π ] ∪ [ 2 π , 3 π ] ∪ [ 4 π , 5 π ] 3\theta \in [0, \pi] \cup [2\pi, 3\pi] \cup [4\pi, 5\pi] 3θ∈[0,π]∪[2π,3π]∪[4π,5π],即 θ ∈ [ 0 , π 3 ] ∪ [ 2 π 3 , π ] ∪ [ 4 π 3 , 5 π 3 ] \theta \in [0, \frac{\pi}{3}] \cup [\frac{2\pi}{3},\pi] \cup [\frac{4\pi}{3}, \frac{5\pi}{3}] θ∈[0,3π]∪[32π,π]∪[34π,35π]。
注意 k 为奇数,因此只需考虑极径为正的情况即可,所以面积为
S = ( ∫ 0 π 3 + ∫ 2 π 3 π + ∫ 4 π 3 5 π 3 ) d θ ∫ 0 sin 3 θ r d r = 3 ∫ 0 π 3 d θ ∫ 0 sin 3 θ r d r S = (\int^{\frac{\pi}{3}}_{0} + \int^{\pi}_{\frac{2\pi}{3}} + \int^{\frac{5\pi}{3}}_{\frac{4\pi}{3}}) d\theta \int^{\sin 3 \theta}_0 rdr = 3 \int^{\frac{\pi}{3}}_{0} d\theta \int^{\sin 3 \theta}_0 rdr S=(∫03π+∫32ππ+∫34π35π)dθ∫0sin3θrdr=3∫03πdθ∫0sin3θrdr
【例 2】求 r = sin 2 θ r= \sin 2 \theta r=sin2θ 所围面积。
【解】注意有 θ ∈ [ 0 , 2 π ] ⇒ 2 θ ∈ [ 0 , 4 π ] \theta \in [0, 2\pi] \Rightarrow 2\theta \in [0, 4\pi] θ∈[0,2π]⇒2θ∈[0,4π]。
因为 r = sin 2 θ ≥ 0 r = \sin 2 \theta \geq 0 r=sin2θ≥0,所以有 2 θ ∈ [ 0 , π ] ∪ [ 2 π , 3 π ] 2\theta \in [0, \pi] \cup [2\pi, 3\pi] 2θ∈[0,π]∪[2π,3π],即 θ ∈ [ 0 , π 2 ] ∪ [ π , 3 π 2 ] \theta \in [0, \frac{\pi}{2}] \cup [\pi, \frac{3\pi}{2}] θ∈[0,2π]∪[π,23π]。
注意 k 为偶数,而这里只考察了极径为正的情况,所以面积还需要乘以 2,如下
S = 2 ( ∫ 0 π 2 + ∫ 3 π 2 π ) d θ ∫ 0 sin 2 θ r d r = 4 ∫ 0 π 2 d θ ∫ 0 sin 2 θ r d r S = 2(\int^{\frac{\pi}{2}}_{0} + \int^{\pi}_{\frac{3\pi}{2}}) d\theta \int^{\sin 2 \theta}_0 rdr = 4 \int^{\frac{\pi}{2}}_{0} d\theta \int^{\sin 2 \theta}_0 rdr S=2(∫02π+∫23ππ)dθ∫0sin2θrdr=4∫02πdθ∫0sin2θrdr
【例 3】求 r = cos 2 θ r=\cos 2 \theta r=cos2θ 所围面积。
【解】注意有 θ ∈ [ 0 , 2 π ] ⇒ 2 θ ∈ [ 0 , 4 π ] \theta \in [0, 2\pi] \Rightarrow 2\theta \in [0, 4\pi] θ∈[0,2π]⇒2θ∈[0,4π]。
当 r = cos 2 θ ≥ 0 r = \cos 2 \theta \geq 0 r=cos2θ≥0 时,有 2 θ ∈ [ 0 , π 2 ] ∪ [ 3 π 2 , 5 π 2 ] ∪ [ 7 π 2 , 2 π ] 2\theta \in [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, \frac{5\pi}{2}] \cup [\frac{7\pi}{2}, 2\pi] 2θ∈[0,2π]∪[23π,25π]∪[27π,2π],即 θ ∈ [ 0 , π 4 ] ∪ [ 3 π 4 , 5 π 4 ] ∪ [ 7 π 4 , 2 π ] \theta \in [0, \frac{\pi}{4}] \cup [\frac{3\pi}{4}, \frac{5\pi}{4}] \cup [\frac{7\pi}{4}, 2\pi] θ∈[0,4π]∪[43π,45π]∪[47π,2π]。
注意 k 为偶数,而这里只考察了极径为正的情况,所以面积还需要乘以 2,如下
S = 2 ( ∫ 0 π 4 + ∫ 3 π 4 5 π 4 + ∫ 7 π 4 2 π ) d θ ∫ 0 cos 2 θ r d r = 8 ∫ 0 π 4 d θ ∫ 0 cos 2 θ r d r S = 2(\int^{\frac{\pi}{4}}_{0} + \int^{\frac{5\pi}{4}}_{\frac{3\pi}{4}} + \int^{2\pi}_{\frac{7\pi}{4}}) d\theta \int^{\cos 2 \theta}_0 rdr = 8 \int^{\frac{\pi}{4}}_{0} d\theta \int^{\cos 2 \theta}_0 rdr S=2(∫04π+∫43π45π+∫47π2π)dθ∫0cos2θrdr=8∫04πdθ∫0cos2θrdr
【双纽线】极坐标形式为 r 2 = a 2 sin 2 θ r^2 = a^2 \sin 2\theta r2=a2sin2θ 或 r 2 = a 2 cos 2 θ r^2 = a^2 \cos 2\theta r2=a2cos2θ。
【例 4】求 r 2 = sin 2 θ r^2= \sin 2 \theta r2=sin2θ 所围面积。
【解】注意有 θ ∈ [ 0 , 2 π ] ⇒ 2 θ ∈ [ 0 , 4 π ] \theta \in [0, 2\pi] \Rightarrow 2\theta \in [0, 4\pi] θ∈[0,2π]⇒2θ∈[0,4π]。
因为 r 2 = sin 2 θ ≥ 0 r^2 = \sin 2 \theta \geq 0 r2=sin2θ≥0,所以有 2 θ ∈ [ 0 , π ] ∪ [ 2 π , 3 π ] 2\theta \in [0, \pi] \cup [2\pi, 3\pi] 2θ∈[0,π]∪[2π,3π],即 θ ∈ [ 0 , π 2 ] ∪ [ π , 3 π 2 ] \theta \in [0, \frac{\pi}{2}] \cup [\pi, \frac{3\pi}{2}] θ∈[0,2π]∪[π,23π]。
极径必为正,所以面积为
S = ( ∫ 0 π 2 + ∫ π 3 π 2 ) d θ ∫ 0 sin 2 θ r d r = 2 ∫ 0 π 2 d θ ∫ 0 sin 2 θ r d r S = (\int^{\frac{\pi}{2}}_{0} + \int^{\frac{3\pi}{2}}_{\pi}) d\theta \int^{\sqrt{\sin 2 \theta}}_0 rdr = 2 \int^{\frac{\pi}{2}}_{0} d\theta \int^{\sqrt{\sin 2 \theta}}_0 rdr S=(∫02π+∫π23π)dθ∫0sin2θrdr=2∫02πdθ∫0sin2θrdr
【例 5】求 r 2 = cos 2 θ r^2= \cos 2 \theta r2=cos2θ 所围面积。
【解】注意有 θ ∈ [ 0 , 2 π ] ⇒ 2 θ ∈ [ 0 , 4 π ] \theta \in [0, 2\pi] \Rightarrow 2\theta \in [0, 4\pi] θ∈[0,2π]⇒2θ∈[0,4π]。
因为 r 2 = cos 2 θ ≥ 0 r^2 = \cos 2 \theta \geq 0 r2=cos2θ≥0,所以有 2 θ ∈ [ 0 , π 2 ] ∪ [ 3 π 2 , 5 π 2 ] ∪ [ 7 π 2 , 2 π ] 2\theta \in [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, \frac{5\pi}{2}] \cup [\frac{7\pi}{2}, 2\pi] 2θ∈[0,2π]∪[23π,25π]∪[27π,2π],即 θ ∈ [ 0 , π 4 ] ∪ [ 3 π 4 , 5 π 4 ] ∪ [ 7 π 4 , 2 π ] \theta \in [0, \frac{\pi}{4}] \cup [\frac{3\pi}{4}, \frac{5\pi}{4}] \cup [\frac{7\pi}{4}, 2\pi] θ∈[0,4π]∪[43π,45π]∪[47π,2π]。
极径必为正,所以面积为
S = ( ∫ 0 π 4 + ∫ 3 π 4 5 π 4 + ∫ 7 π 4 2 π ) d θ ∫ 0 cos 2 θ r d r = 4 ∫ 0 π 4 d θ ∫ 0 cos 2 θ r d r S = (\int^{\frac{\pi}{4}}_{0} + \int^{\frac{5\pi}{4}}_{\frac{3\pi}{4}} + \int^{2\pi}_{\frac{7\pi}{4}}) d\theta \int^{\sqrt{\cos 2 \theta}}_0 rdr = 4 \int^{\frac{\pi}{4}}_{0} d\theta \int^{\sqrt{\cos 2 \theta}}_0 rdr S=(∫04π+∫43π45π+∫47π2π)dθ∫0cos2θrdr=4∫04πdθ∫0cos2θrdr
设 D D D 由 f ( x ) ≥ g ( x ) , x ∈ [ a , b ] f(x) \geq g(x), x \in [a,b] f(x)≥g(x),x∈[a,b] 所围,则形心 ( x ˉ , y ˉ ) (\bar x, \bar y) (xˉ,yˉ) 为
x ˉ = ∬ D x d x d y ∬ D d x d y = ∫ a b x [ f ( x ) − g ( x ) ] d x ∫ a b [ f ( x ) − g ( x ) ] d x y ˉ = ∬ D y d x d y ∬ D d x d y = 1 2 ∫ a b [ f 2 ( x ) − g 2 ( x ) ] d x ∫ a b [ f ( x ) − g ( x ) ] d x \begin{aligned} & \bar x=\frac{\iint \limits_{D} x dxdy}{\iint \limits_{D} dxdy} = \frac{\int^b_a x[f(x)-g(x)] dx}{\int^b_a [f(x)-g(x)] dx} \\ & \bar y=\frac{\iint \limits_{D} y dxdy}{\iint \limits_{D} dxdy} = \frac{ \frac{1}{2} \int^b_a [f^2(x)-g^2(x)] dx}{\int^b_a [f(x)-g(x)] dx} \end{aligned} xˉ=D∬dxdyD∬xdxdy=∫ab[f(x)−g(x)]dx∫abx[f(x)−g(x)]dxyˉ=D∬dxdyD∬ydxdy=∫ab[f(x)−g(x)]dx21∫ab[f2(x)−g2(x)]dx
设 D D D 由 f ( x ) ≥ g ( x ) , x ∈ [ a , b ] f(x) \geq g(x), x \in [a,b] f(x)≥g(x),x∈[a,b] 所围,面密度为 ρ ( x , y ) \rho(x,y) ρ(x,y),则质心 ( x ˉ , y ˉ ) (\bar x, \bar y) (xˉ,yˉ) 为
x ˉ = ∬ D x ρ ( x , y ) d x d y ∬ D ρ ( x , y ) d x d y y ˉ = ∬ D y ρ ( x , y ) d x d y ∬ D ρ ( x , y ) d x d y \begin{aligned} & \bar x=\frac{\iint \limits_{D} x\rho(x,y) dxdy}{\iint \limits_{D} \rho(x,y) dxdy} \\ & \bar y=\frac{\iint \limits_{D} y\rho(x,y) dxdy}{\iint \limits_{D} \rho(x,y) dxdy} \end{aligned} xˉ=D∬ρ(x,y)dxdyD∬xρ(x,y)dxdyyˉ=D∬ρ(x,y)dxdyD∬yρ(x,y)dxdy
设曲线方程为 y = y ( x ) y=y(x) y=y(x), y ( x ) y(x) y(x) 二阶可导,则曲线的曲率和曲率半径分别为
K = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 , R = 1 K K = \frac{|y''|}{\sqrt{(1+y'^2)^3}}, R=\frac{1}{K} K=(1+y′2)3∣y′′∣,R=K1
设曲线方程 y = f ( x ) , x ∈ [ a , b ] y=f(x), x \in [a,b] y=f(x),x∈[a,b] 由参数方程 { x = x ( t ) y = y ( t ) , t ∈ [ α , β ] \begin{cases} x=x(t) \\ y=y(t) \end{cases}, t \in [\alpha,\beta] {x=x(t)y=y(t),t∈[α,β] 确定,则曲线的曲率和曲率半径分别为
K = ∣ x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ∣ [ x ′ 2 ( t ) + y ′ 2 ( t ) ] 3 , R = 1 K K = \frac{|x'(t)y''(t)-x''(t)y'(t)|}{\sqrt{[x'^2(t)+y'^2(t)]^3}}, R=\frac{1}{K} K=[x′2(t)+y′2(t)]3∣x′(t)y′′(t)−x′′(t)y′(t)∣,R=K1
设曲线方程为 y = y ( x ) , x ∈ [ a , b ] y=y(x), x \in [a,b] y=y(x),x∈[a,b],则弧微分和弧长分别为
d s = 1 + f ′ 2 ( x ) d x s = ∫ a b d s = ∫ a b 1 + f ′ 2 ( x ) d x \begin{aligned} & ds = \sqrt{1+f'^2(x)} dx \\ & s = \int^b_a ds = \int^b_a \sqrt{1+f'^2(x)} dx \\ \end{aligned} ds=1+f′2(x)dxs=∫abds=∫ab1+f′2(x)dx
设曲线方程 y = f ( x ) , x ∈ [ a , b ] y=f(x), x \in [a,b] y=f(x),x∈[a,b] 由参数方程 { x = x ( t ) y = y ( t ) , t ∈ [ α , β ] \begin{cases} x=x(t) \\ y=y(t) \end{cases}, t \in [\alpha,\beta] {x=x(t)y=y(t),t∈[α,β] 确定,则弧微分和弧长分别为
d s = 1 + ( y ′ ( t ) x ′ ( t ) ) 2 d [ x ( t ) ] = x ′ 2 ( t ) + y ′ 2 ( t ) d t s = ∫ α β d s = ∫ α β x ′ 2 ( t ) + y ′ 2 ( t ) d t \begin{aligned} & ds = \sqrt{1 + \left( \frac{y'(t)}{x'(t)} \right)^2 } d[x(t)] = \sqrt{x'^2(t)+y'^2(t)} dt \\ & s = \int^{\beta}_{\alpha} ds = \int^{\beta}_{\alpha} \sqrt{x'^2(t)+y'^2(t)} dt \\ \end{aligned} ds=1+(x′(t)y′(t))2d[x(t)]=x′2(t)+y′2(t)dts=∫αβds=∫αβx′2(t)+y′2(t)dt
设平面曲线由极坐标方程 r = r ( θ ) , θ ∈ [ α , β ] r=r(\theta), \theta \in [\alpha,\beta] r=r(θ),θ∈[α,β] 确定,则可先转化为参数方程形式
{ x ( θ ) = r ( θ ) cos θ y ( θ ) = r ( θ ) sin θ \begin{cases} x(\theta) = r(\theta) \cos \theta \\ y(\theta) = r(\theta) \sin \theta \end{cases} {x(θ)=r(θ)cosθy(θ)=r(θ)sinθ
此时参数方程形式下的弧微分和弧长为
d s = 1 + ( y ′ ( θ ) x ′ ( θ ) ) 2 d [ x ( θ ) ] = x ′ 2 ( θ ) + y ′ 2 ( θ ) d θ = r ′ 2 ( θ ) + r 2 ( θ ) d θ s = ∫ α β d s = ∫ α β r ′ 2 ( θ ) + r 2 ( θ ) d θ \begin{aligned} & ds = \sqrt{1 + \left( \frac{y'(\theta)}{x'(\theta)} \right)^2 } d[x(\theta)] = \sqrt{x'^2(\theta)+y'^2(\theta)} d\theta = \sqrt{r'^2(\theta)+r^2(\theta)} d\theta \\ & s = \int^{\beta}_{\alpha} ds = \int^{\beta}_{\alpha} \sqrt{r'^2(\theta)+r^2(\theta)} d\theta \\ \end{aligned} ds=1+(x′(θ)y′(θ))2d[x(θ)]=x′2(θ)+y′2(θ)dθ=r′2(θ)+r2(θ)dθs=∫αβds=∫αβr′2(θ)+r2(θ)dθ
(1)x 轴区间 [ a , b ] [a,b] [a,b] 上的形心为
x ˉ = ∫ a b x d x ∫ a b d x = a + b 2 \bar x=\frac{\int^b_a x dx}{\int^b_a dx} = \frac{a+b}{2} xˉ=∫abdx∫abxdx=2a+b
(2)设曲线由参数方程 { x = x ( t ) y = y ( t ) , t ∈ [ α , β ] \begin{cases} x=x(t) \\ y=y(t) \end{cases}, t \in [\alpha,\beta] {x=x(t)y=y(t),t∈[α,β] 确定,则平面曲线的形心 ( x ˉ , y ˉ ) (\bar x, \bar y) (xˉ,yˉ) 为
x ˉ = ∫ α β x ( t ) d s ∫ α β d s = ∫ α β x ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) d t ∫ α β x ′ 2 ( t ) + y ′ 2 ( t ) d t y ˉ = ∫ α β y ( t ) d s ∫ α β d s = ∫ α β y ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) d t ∫ α β x ′ 2 ( t ) + y ′ 2 ( t ) d t \bar x = \frac{\int^{\beta}_{\alpha} x(t) ds}{\int^{\beta}_{\alpha} ds} = \frac{\int^{\beta}_{\alpha} x(t) \sqrt{x'^2(t) + y'^2(t)} dt}{\int^{\beta}_{\alpha} \sqrt{x'^2(t) + y'^2(t)} dt} \\ \bar y = \frac{\int^{\beta}_{\alpha} y(t) ds}{\int^{\beta}_{\alpha} ds} = \frac{\int^{\beta}_{\alpha} y(t) \sqrt{x'^2(t) + y'^2(t)} dt}{\int^{\beta}_{\alpha} \sqrt{x'^2(t) + y'^2(t)} dt} xˉ=∫αβds∫αβx(t)ds=∫αβx′2(t)+y′2(t)dt∫αβx(t)x′2(t)+y′2(t)dtyˉ=∫αβds∫αβy(t)ds=∫αβx′2(t)+y′2(t)dt∫αβy(t)x′2(t)+y′2(t)dt
设线密度为 ρ ( x ) \rho(x) ρ(x),则 x 轴区间 [ a , b ] [a,b] [a,b] 上的形心为
x ˉ = ∫ a b x ρ ( x ) d x ∫ a b ρ ( x ) d x \bar x=\frac{\int^b_a x \rho(x) dx}{\int^b_a \rho(x) dx} xˉ=∫abρ(x)dx∫abxρ(x)dx
设曲线方程为 y = f ( x ) , x ∈ [ a , b ] y=f(x), x \in [a,b] y=f(x),x∈[a,b],旋转轴方程为 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0,则曲线绕旋转轴所成体积为
V = 2 π ∬ D r ( x , y ) d x d y = 2 π ∬ D ∣ A x + B f ( x ) + C ∣ A 2 + B 2 d x d y V = 2 \pi \iint \limits_{D} r(x,y) dxdy = 2 \pi \iint \limits_{D} \frac{|Ax+Bf(x)+C|}{\sqrt{A^2+B^2}} dxdy V=2πD∬r(x,y)dxdy=2πD∬A2+B2∣Ax+Bf(x)+C∣dxdy
设曲线方程为 y = f ( x ) , x ∈ [ a , b ] y=f(x), x \in [a,b] y=f(x),x∈[a,b] 和 y = g ( x ) , x ∈ [ a , b ] y=g(x), x \in [a,b] y=g(x),x∈[a,b],且 f ( x ) ≥ g ( x ) f(x) \geq g(x) f(x)≥g(x)。
(1)设 D D D 由曲线方程 y = f ( x ) , x = a , x = b y=f(x), x=a, x=b y=f(x),x=a,x=b,x 轴( y = 0 y=0 y=0)所围,则 D D D 绕 x 轴( y = 0 y=0 y=0)所得旋转体的体积为
V = 2 π ∬ D ∣ y ∣ d x d y = 2 π ∫ a b d x ∫ 0 f ( x ) ∣ y ∣ d y = π ∫ a b ∣ f ( x ) ∣ 2 d x V = 2 \pi \iint \limits_{D} |y| dxdy = 2\pi \int^b_a dx \int^{f(x)}_0 |y| dy = \pi \int^b_a |f(x)|^2 dx V=2πD∬∣y∣dxdy=2π∫abdx∫0f(x)∣y∣dy=π∫ab∣f(x)∣2dx
(2)设 D D D 由曲线方程 y = f ( x ) , x = a , x = b y=f(x), x=a, x=b y=f(x),x=a,x=b, y = k y=k y=k 所围,则 D D D 绕 y = k y=k y=k 所得旋转体的体积为
V = 2 π ∬ D ∣ y ∣ d x d y = 2 π ∫ a b d x ∫ 0 f ( x ) ∣ y − k ∣ d y = π ∫ a b ∣ f ( x ) − k ∣ 2 d x V = 2 \pi \iint \limits_{D} |y| dxdy = 2\pi \int^b_a dx \int^{f(x)}_0 |y-k| dy = \pi \int^b_a |f(x)-k|^2 dx V=2πD∬∣y∣dxdy=2π∫abdx∫0f(x)∣y−k∣dy=π∫ab∣f(x)−k∣2dx
(3)设 D D D 由曲线方程 y = f ( x ) , y = g ( x ) , x = a , x = b y=f(x), y=g(x), x=a, x=b y=f(x),y=g(x),x=a,x=b,x 轴( y = 0 y=0 y=0)所围,则 D D D 绕 x 轴( y = 0 y=0 y=0)所得旋转体的体积为
V = 2 π ∬ D ∣ y ∣ d x d y = 2 π ∫ a b d x ∫ g ( x ) f ( x ) ∣ y ∣ d y = π ∫ a b [ f 2 ( x ) − g 2 ( x ) ] d x V = 2 \pi \iint \limits_{D} |y| dxdy = 2\pi \int^b_a dx \int^{f(x)}_{g(x)} |y| dy = \pi \int^b_a [f^2(x)-g^2(x)] dx V=2πD∬∣y∣dxdy=2π∫abdx∫g(x)f(x)∣y∣dy=π∫ab[f2(x)−g2(x)]dx
(4)设 D D D 由曲线方程 y = f ( x ) , y = g ( x ) , x = a , x = b y=f(x), y=g(x), x=a, x=b y=f(x),y=g(x),x=a,x=b 所围,则 D D D 绕 y = k ( k ≥ f ( x ) 或 k ≤ g ( x ) ) y=k(k \geq f(x) 或 k \leq g(x)) y=k(k≥f(x)或k≤g(x)) 所得旋转体的体积为
V = 2 π ∬ D ∣ y ∣ d x d y = 2 π ∫ a b d x ∫ g ( x ) f ( x ) ∣ y − k ∣ d y = π ∫ a b ( [ f ( x ) − k ] 2 − [ g ( x ) − k ] 2 ) d x V = 2 \pi \iint \limits_{D} |y| dxdy = 2\pi \int^b_a dx \int^{f(x)}_{g(x)} |y-k| dy = \pi \int^b_a \bigg( [f(x)-k]^2 - [g(x)-k]^2 \bigg) dx V=2πD∬∣y∣dxdy=2π∫abdx∫g(x)f(x)∣y−k∣dy=π∫ab([f(x)−k]2−[g(x)−k]2)dx
设曲线方程为 y = f ( x ) , x ∈ [ a , b ] y=f(x), x \in [a,b] y=f(x),x∈[a,b] 和 y = g ( x ) , x ∈ [ a , b ] y=g(x), x \in [a,b] y=g(x),x∈[a,b],且 f ( x ) ≥ g ( x ) f(x) \geq g(x) f(x)≥g(x)。
(1)设 D D D 由曲线方程 y = f ( x ) , x = a , x = b y=f(x), x=a, x=b y=f(x),x=a,x=b,x 轴( y = 0 y=0 y=0)所围,则 D D D 绕 y 轴( x = 0 x=0 x=0)所得旋转体的体积为
V = 2 π ∬ D ∣ x ∣ d x d y = 2 π ∫ a b d x ∫ 0 f ( x ) ∣ x ∣ d y = 2 π ∫ a b ∣ x f ( x ) ∣ d x V = 2 \pi \iint \limits_{D} |x| dxdy = 2\pi \int^b_a dx \int^{f(x)}_0 |x| dy = 2\pi \int^b_a |xf(x)| dx V=2πD∬∣x∣dxdy=2π∫abdx∫0f(x)∣x∣dy=2π∫ab∣xf(x)∣dx
(2)设 D D D 由曲线方程 y = f ( x ) , x = a , x = b y=f(x), x=a, x=b y=f(x),x=a,x=b,x 轴( y = 0 y=0 y=0)所围,则 D D D 绕 x = k x=k x=k 所得旋转体的体积为
V = 2 π ∬ D ∣ y ∣ d x d y = 2 π ∫ a b d x ∫ 0 f ( x ) ∣ x − k ∣ d y = 2 π ∫ a b ∣ x − k ∣ ⋅ ∣ f ( x ) ∣ d x V = 2 \pi \iint \limits_{D} |y| dxdy = 2\pi \int^b_a dx \int^{f(x)}_0 |x-k| dy = 2\pi \int^b_a |x-k| \cdot |f(x)| dx V=2πD∬∣y∣dxdy=2π∫abdx∫0f(x)∣x−k∣dy=2π∫ab∣x−k∣⋅∣f(x)∣dx
(3)设 D D D 由曲线方程 y = f ( x ) , y = g ( x ) , x = a , x = b y=f(x), y=g(x), x=a, x=b y=f(x),y=g(x),x=a,x=b 所围,则 D D D 绕 y 轴( x = 0 x=0 x=0)所得旋转体的体积为
V = 2 π ∬ D ∣ x ∣ d x d y = 2 π ∫ a b d x ∫ g ( x ) f ( x ) ∣ x ∣ d y = 2 π ∫ a b ∣ x ∣ ⋅ [ f ( x ) − g ( x ) ] d x V = 2 \pi \iint \limits_{D} |x| dxdy = 2\pi \int^b_a dx \int^{f(x)}_{g(x)} |x| dy = 2\pi \int^b_a |x| \cdot [f(x)-g(x)] dx V=2πD∬∣x∣dxdy=2π∫abdx∫g(x)f(x)∣x∣dy=2π∫ab∣x∣⋅[f(x)−g(x)]dx
(4)设 D D D 由曲线方程 y = f ( x ) , y = g ( x ) , x = a , x = b y=f(x), y=g(x), x=a, x=b y=f(x),y=g(x),x=a,x=b 所围,则 D D D 绕 x = k ( k ≥ b 或 k ≤ a ) x=k(k \geq b 或 k \leq a) x=k(k≥b或k≤a) 所得旋转体的体积为
V = 2 π ∬ D ∣ y ∣ d x d y = 2 π ∫ a b d x ∫ g ( x ) f ( x ) ∣ x − k ∣ d y = 2 π ∫ a b ∣ x − k ∣ ⋅ [ f ( x ) − g ( x ) ] d x V = 2 \pi \iint \limits_{D} |y| dxdy = 2\pi \int^b_a dx \int^{f(x)}_{g(x)} |x-k| dy = 2\pi \int^b_a |x-k| \cdot [f(x)-g(x)] dx V=2πD∬∣y∣dxdy=2π∫abdx∫g(x)f(x)∣x−k∣dy=2π∫ab∣x−k∣⋅[f(x)−g(x)]dx
【例 1】区域 D D D 由曲线方程 y = sin x , y = 0 , y = π 2 y=\sin x, y=0, y=\frac{\pi}{2} y=sinx,y=0,y=2π 所围,求 D D D 绕 x 轴和 y 轴旋转所得旋转体的体积 V x V_x Vx 和 V y V_y Vy。
【解】(1) D D D 绕 x 轴所得旋转体的体积为
V x = 2 π ∬ D y d x d y = 2 π ∫ 0 π 2 d x ∫ 0 sin x y d y = π ∫ 0 π 2 sin 2 x d x = π 2 4 V_x = 2 \pi \iint \limits_{D} y dxdy = 2\pi \int^{\frac{\pi}{2}}_0 dx \int^{\sin x}_0 y dy = \pi \int^{\frac{\pi}{2}}_0 \sin^2 x dx = \frac{\pi^2}{4} Vx=2πD∬ydxdy=2π∫02πdx∫0sinxydy=π∫02πsin2xdx=4π2
(2) D D D 绕 y 轴所得旋转体的体积为
V y = 2 π ∬ D x d x d y = 2 π ∫ 0 π 2 d x ∫ 0 sin x x d y = 2 π ∫ 0 π 2 x sin x d x = 2 π V_y = 2 \pi \iint \limits_{D} x dxdy = 2\pi \int^{\frac{\pi}{2}}_0 dx \int^{\sin x}_0 x dy = 2\pi \int^{\frac{\pi}{2}}_0 x\sin x dx = 2\pi Vy=2πD∬xdxdy=2π∫02πdx∫0sinxxdy=2π∫02πxsinxdx=2π
以上方法是基于纵向分割的微元,即先 d y dy dy,后 d x dx dx,采用柱壳法。也可基于横向分割的微元,采用切片法,先 d x dx dx,后 d y dy dy,如下
V y = 2 π ∫ 0 1 d y ∫ arcsin y π 2 x d x = π 3 4 − π ( π 2 4 − 2 ) = 2 π \begin{aligned} V_y &= 2\pi \int^1_0 dy \int^{\frac{\pi}{2}}_{\arcsin y} x dx \\ &= \frac{\pi^3}{4} - \pi (\frac{\pi^2}{4} - 2) = 2\pi \\ \end{aligned} Vy=2π∫01dy∫arcsiny2πxdx=4π3−π(4π2−2)=2π
【例 2】设摆线 { x = a ( t − sin t ) y = a ( 1 − cos t ) ( t ∈ [ 0 , 2 π ] , a > 0 ) \begin{cases} x=a(t-\sin t) \\ y=a(1-\cos t) \end{cases}(t \in [0, 2\pi], a>0) {x=a(t−sint)y=a(1−cost)(t∈[0,2π],a>0) 与 x 轴所围平面图形为 D D D。
(1)求 D D D 绕 x 轴和 y 轴所得旋转体的体积;
(2)求 D D D 绕直线 y = 2 a y=2a y=2a 所得旋转体的体积。
【解】(1) D D D 绕 x 轴所得旋转体的体积为
V x = 2 π ∬ D y d x d y = 2 π ∫ 0 2 π a d x ∫ 0 f ( x ) y d y = π ∫ 0 2 π a f 2 ( x ) d x = π ∫ 0 2 π y 2 ( t ) d [ x ( t ) ] = π ∫ 0 2 π y 2 ( t ) x ′ ( t ) d t = 5 π 2 a 3 \begin{aligned} V_x &= 2 \pi \iint \limits_{D} y dxdy = 2\pi \int^{2\pi a}_0 dx \int^{f(x)}_0 y dy = \pi \int^{2\pi a}_0 f^2(x) dx \\ &= \pi \int^{2\pi}_0 y^2(t) d[x(t)] = \pi \int^{2\pi}_0 y^2(t) x'(t) dt = 5\pi^2 a^3 \end{aligned} Vx=2πD∬ydxdy=2π∫02πadx∫0f(x)ydy=π∫02πaf2(x)dx=π∫02πy2(t)d[x(t)]=π∫02πy2(t)x′(t)dt=5π2a3
D D D 绕 y 轴所得旋转体的体积为
V y = 2 π ∬ D x d x d y = 2 π ∫ 0 2 π a d x ∫ 0 f ( x ) x d y = π ∫ 0 2 π a x f ( x ) d x = π ∫ 0 2 π x ( t ) y ( t ) d [ x ( t ) ] = π ∫ 0 2 π x ( t ) y ( t ) x ′ ( t ) d t = 6 π 3 a 3 \begin{aligned} V_y &= 2 \pi \iint \limits_{D} x dxdy = 2\pi \int^{2\pi a}_0 dx \int^{f(x)}_0 x dy = \pi \int^{2\pi a}_0 xf(x) dx \\ &= \pi \int^{2\pi}_0 x(t) y(t) d[x(t)] = \pi \int^{2\pi}_0 x(t) y(t) x'(t) dt = 6\pi^3 a^3 \end{aligned} Vy=2πD∬xdxdy=2π∫02πadx∫0f(x)xdy=π∫02πaxf(x)dx=π∫02πx(t)y(t)d[x(t)]=π∫02πx(t)y(t)x′(t)dt=6π3a3
(2) D D D 绕直线 y = 2 a y=2a y=2a 所得旋转体的体积为
V y = 2 a = 2 π ∫ 0 2 π a d x ∫ 0 f ( x ) ( 2 a − y ) d y = − π ∫ 0 2 π a ( [ 2 a − f ( x ) ] 2 − ( 2 a ) 2 ) d x = 8 π 2 a 3 − π ∫ 0 2 π [ 2 a − x ( t ) ] 2 d [ x ( t ) ] = 8 π 2 a 3 − π ∫ 0 2 π [ 2 a − x ( t ) ] 2 x ′ ( t ) d t = 7 π 2 a 3 \begin{aligned} V_{y=2a} &= 2\pi \int^{2\pi a}_0 dx \int^{f(x)}_{0} (2a-y) dy \\ & = - \pi \int^{2\pi a}_0 \bigg( [2a-f(x)]^2 - (2a)^2 \bigg) dx \\ &= 8\pi^2 a^3 - \pi \int^{2\pi}_0 [2a-x(t)]^2 d[x(t)] \\ &= 8\pi^2 a^3 - \pi \int^{2\pi}_0 [2a-x(t)]^2 x'(t) dt = 7\pi^2 a^3 \end{aligned} Vy=2a=2π∫02πadx∫0f(x)(2a−y)dy=−π∫02πa([2a−f(x)]2−(2a)2)dx=8π2a3−π∫02π[2a−x(t)]2d[x(t)]=8π2a3−π∫02π[2a−x(t)]2x′(t)dt=7π2a3
【例 3】设心形线 r = 4 ( 1 + cos θ ) r=4(1+\cos \theta) r=4(1+cosθ) 与 θ = 0 , θ = π 2 \theta = 0, \theta = \frac{\pi}{2} θ=0,θ=2π 所围图形为 D D D,求 D D D 绕极轴旋转一周所得旋转体的体积。
【解】先将极坐标方程写成参数方程
{ x ( θ ) = 4 ( 1 + cos θ ) cos θ y ( θ ) = 4 ( 1 + cos θ ) sin θ \begin{cases} x(\theta) = 4(1+\cos \theta) \cos \theta \\ y(\theta) = 4(1+\cos \theta) \sin \theta \end{cases} {x(θ)=4(1+cosθ)cosθy(θ)=4(1+cosθ)sinθ
因此 D D D 绕 x 轴所得旋转体的体积为
V x = 2 π ∬ D y d x d y = 2 π ∫ 0 8 d x ∫ 0 f ( x ) y d y = π ∫ 0 8 f 2 ( x ) d x = π ∫ π 2 0 y 2 ( θ ) d [ x ( θ ) ] = π ∫ π 2 0 y 2 ( θ ) x ′ ( θ ) d θ = 160 π \begin{aligned} V_x &= 2 \pi \iint \limits_{D} y dxdy = 2\pi \int^8_0 dx \int^{f(x)}_0 y dy = \pi \int^8_0 f^2(x) dx \\ &= \pi \int^0_{\frac{\pi}{2}} y^2(\theta) d[x(\theta)] = \pi \int^0_{\frac{\pi}{2}} y^2(\theta) x'(\theta) d\theta = 160\pi \end{aligned} Vx=2πD∬ydxdy=2π∫08dx∫0f(x)ydy=π∫08f2(x)dx=π∫2π0y2(θ)d[x(θ)]=π∫2π0y2(θ)x′(θ)dθ=160π
(1)设 D D D 由曲线方程 y = f ( x ) , x = a , x = b y=f(x), x=a, x=b y=f(x),x=a,x=b,x 轴所围,则 D D D 绕 x 轴所得旋转体的侧面积为
S = 2 π ∫ a b ∣ f ( x ) ∣ d s = 2 π ∫ a b ∣ f ( x ) ∣ 1 + f ′ 2 ( x ) d x S = 2\pi \int^b_a |f(x)| ds = 2\pi \int^b_a |f(x)| \sqrt{1+f'^2(x)} dx S=2π∫ab∣f(x)∣ds=2π∫ab∣f(x)∣1+f′2(x)dx
(2)设 D D D 由曲线方程 y = f ( x ) , x = a , x = b y=f(x), x=a, x=b y=f(x),x=a,x=b,x 轴所围,则 D D D 绕 L : A x + B y + C = 0 L: Ax+By+C=0 L:Ax+By+C=0 所得旋转体的侧面积为
S = 2 π ∫ a b r ( x , y ) d s = 2 π ∫ a b ∣ A x + B f ( x ) + C ∣ A 2 + B 2 1 + f ′ 2 ( x ) d x S = 2\pi \int^b_a r(x,y) ds = 2\pi \int^b_a \frac{|Ax+Bf(x)+C|}{\sqrt{A^2+B^2}} \sqrt{1+f'^2(x)} dx S=2π∫abr(x,y)ds=2π∫abA2+B2∣Ax+Bf(x)+C∣1+f′2(x)dx
设曲线方程 y = f ( x ) , x ∈ [ a , b ] y=f(x), x \in [a,b] y=f(x),x∈[a,b] 由参数方程 { x = x ( t ) y = y ( t ) , t ∈ [ α , β ] \begin{cases} x=x(t) \\ y=y(t) \end{cases}, t \in [\alpha, \beta] {x=x(t)y=y(t),t∈[α,β] 确定, D D D 由曲线方程 y = f ( x ) , x = a , x = b y=f(x), x=a, x=b y=f(x),x=a,x=b,x 轴所围,则 D D D 绕 x 轴所得旋转体的侧面积为
S = 2 π ∫ a b ∣ f ( x ) ∣ d s = 2 π ∫ α β ∣ y ( t ) ∣ x ′ 2 ( t ) + y ′ 2 ( t ) d t S = 2\pi \int^b_a |f(x)| ds = 2\pi \int^{\beta}_{\alpha} |y(t)| \sqrt{x'^2(t)+y'^2(t)} dt S=2π∫ab∣f(x)∣ds=2π∫αβ∣y(t)∣x′2(t)+y′2(t)dt
设平面曲线由极坐标方程 r = r ( θ ) , θ ∈ [ α , β ] r=r(\theta), \theta \in [\alpha,\beta] r=r(θ),θ∈[α,β] 确定,则可先转化为参数方程形式
{ x ( θ ) = r ( θ ) cos θ y ( θ ) = r ( θ ) sin θ \begin{cases} x(\theta) = r(\theta) \cos \theta \\ y(\theta) = r(\theta) \sin \theta \end{cases} {x(θ)=r(θ)cosθy(θ)=r(θ)sinθ
则 D D D 绕 x 轴所得旋转体的侧面积为
S = 2 π ∫ a b ∣ f ( x ) ∣ d s = 2 π ∫ α β ∣ r ( θ ) sin θ ∣ r 2 ( θ ) + r ′ 2 ( θ ) d θ S = 2\pi \int^b_a |f(x)| ds = 2\pi \int^{\beta}_{\alpha} |r(\theta) \sin \theta| \sqrt{r^2(\theta)+r'^2(\theta)} d\theta S=2π∫ab∣f(x)∣ds=2π∫αβ∣r(θ)sinθ∣r2(θ)+r′2(θ)dθ