- Milvus向量数据库入门指南
longfei.li
milvus数据库人工智能
一、Milvus简介Milvus是一个开源的向量数据库,专为AI应用和向量相似度搜索而设计,以加速非结构化数据的检索。自2019年创建以来,Milvus专注于存储、索引和管理由深度神经网络和其他机器学习模型生成的海量嵌入向量。其能够处理万亿级别的向量索引任务。Milvus的核心优势在于其高效的索引机制,它支持多种索引类型,包括FLAT、IVF_FLAT、IVF_SQ8、IVF_PQ和HNSW等。这
- Golang领域GOROOT的配置与使用技巧
Golang编程笔记
golang爬虫开发语言ai
Golang领域GOROOT的配置与使用技巧关键词:Golang,GOROOT,配置,使用技巧,环境变量摘要:本文详细介绍了Golang领域中GOROOT的相关知识。首先阐述了GOROOT的背景,包括其目的、适用读者、文档结构和相关术语。接着深入解析了GOROOT的核心概念及与其他关键元素的联系,并通过Mermaid流程图展示其架构。之后详细讲解了GOROOT配置的核心算法原理及具体操作步骤,配以
- 常见机器学习算法与应用场景
计算机软件程序设计
知识科普机器学习算法人工智能
当然可以。下面是对常见机器学习算法的全面详细阐述,包括每种算法的基本原理、特点以及典型应用场景。1.监督学习(SupervisedLearning)1.1线性回归(LinearRegression)原理:通过拟合一条直线来表示输入和输出之间的关系,适用于预测连续值输出。特点:简单易懂,计算速度快,但只能捕捉线性关系。应用场景:房价预测股票价格预测销售额预测1.2逻辑回归(LogisticRegre
- 动态规划1:爬楼梯问题
追梦_逐影
动态规划算法
1.看力扣这道题2.我们可以把楼梯数简化出来输入012345输出1123583.不难看出,其实就是斐波那契数列,这种题有两种解法,一种是递归,另一种则是动态规划4.动态规划可以节约时间复杂度5.下面请看解法,定义数组a[0],a[1]=1;,作为初始值,然后每次依次遍历后面的值,最终,返回a[n]则为第n阶所需要的方法数classSolution{inta[50];public:intclimbS
- LeetCode 70:爬楼梯|递归到动态规划全路径解析
kiki_2411
算法设计与分析leetcode动态规划算法
本篇博客将通过LeetCode第70题“ClimbingStairs”为例,系统讲解从递归暴力解法到记忆化搜索、再到动态规划及空间优化的四种典型思路,适合算法初学者深入掌握递归与DP基础。文章目录LeetCode70|爬楼梯一、题目描述二、思路分析三、方法一:递归(不带记忆)思路C++代码四、方法二:递归+记忆化搜索(Top-DownDP)思路五、方法三:动态规划(Bottom-Up)思路六、方法
- 深入理解HashMap:从数据结构到高并发战场
达利源
java面试题哈希算法散列表算法
以下是我在财税业务中的自我体会:一、核心矛盾与设计哲学想象一个存放千万级纳税人信息的仓库(Map)。你需要:极速存取:输入ID,瞬间定位到对象。动态扩容:纳税人数量激增时,仓库能自动变大。空间高效:避免仓库大部分区域空置。线程安全(可选):多窗口(线程)同时办理业务不混乱。HashMap的答卷:核心武器:数组+链表/红黑树灵魂算法:哈希函数(HashFunction)扩容策略:负载因子(LoadF
- [由浅入深理解神经网络] 2 张量流与反向传播
由浅入深理解神经网络2张量流与反向传播0前言1张量流和运算图2复合函数视角2.1复合函数求导2.1.1链式法则2.1.2多元函数的链式法则2.2前馈网络的反向传播2.3任意网络的反向传播3结语0前言在由浅入深理解神经网络1一个简单到极致的神经网络中,我们已经发现了训练神经网络最重要的一件事,那就是求梯度,然后优化算法利用梯度来调整网络参数.我们重写一下前面提到的一个通用的神经网络:y=f(x;θ)
- Java高并发系统限流算法的应用
赵广陆
arithmeticjava算法开发语言
目录1概述2计数器限流2.1概述2.2实现2.3结果分析2.4优缺点2.5应用3漏桶算法3.1概述3.2实现3.3结果分析3.4优缺点4令牌桶算法4.1概述4.2实现4.3结果分析4.4应用5滑动窗口5.1概述5.2实现5.3结果分析5.4应用想学习架构师构建流程请跳转:Java架构师系统架构设计1概述在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流。限流可以认为服务降级的一种,限流是对
- Python从0到100完整学习指南(必看导航)
是Dream呀
Pythonpython人工智能爬虫web神经网络算法深度学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学业升学和工作就业的先行者!【优惠信息】•新专栏订阅前1000名享9.9元优惠•订阅量破10
- Python|读取word文档表格内容
算法与编程之美
算法之美编程语言人工智能python数据挖掘数据可视化
本文首发于微信公众号:"算法与编程之美",欢迎关注,及时了解更多此系列文章。引言在日常生活里,不管是办公、学习还是制作邀请函、请柬、简历等等,我们都会使用一个软件MicrosoftOfficeWord,OfficeWord是微软公司的一个收费文字处理应用程序,是最流行的文字处理程序之一,它虽功能强大,但简学易懂,但同时也有一个缺点,当一个Word文档储存的内容特别庞大的时候,使用者想要提取自己想要
- 【机器学习&深度学习】模型微调的基本概念与流程
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是模型微调(Fine-tuning)?二、预训练vs微调:什么关系?三、微调的基本流程(以BERT为例)1️⃣准备数据2️⃣加载预训练模型和分词器3️⃣数据编码与加载4️⃣定义优化器5️⃣开始训练6️⃣评估与保存模型四、是否要冻结BERT层?五、完整训练示例代码5.1环境依赖5.2执行代码总结:微调的优势前言在自然语言处理(NLP)快速发展的今天,预训练模型如BERT成为了众多任务
- 前沿技术推动机器人的智能化升级
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据机器人ai
前沿技术推动机器人的智能化升级关键词:机器人智能化、人工智能、机器学习、计算机视觉、自主导航、人机交互、边缘计算摘要:本文深入探讨了前沿技术如何推动机器人从传统自动化向智能化升级的演进过程。文章首先分析了机器人技术发展的历史脉络和当前挑战,然后详细阐述了人工智能、机器学习、计算机视觉等关键技术如何赋能机器人智能化。通过算法原理分析、数学模型构建和实际项目案例,展示了智能机器人的核心技术实现路径。最
- 策略模式 - Flutter中的算法超市,运行时自由切换“计算法则“!
明似水
flutter策略模式flutter算法
痛点场景:支付流程的if-else地狱假设你正在开发一个电商App,需要支持多种支付方式:voidprocessPayment(Stringmethod,doubleamount){if(method=='alipay'){print('调用支付宝SDK,支付¥$amount');//支付宝特定逻辑...}elseif(method=='wechat'){print('调用微信支付SDK,支付¥$
- P1967 [NOIP 2013 提高组] 货车运输(树链剖分+线段树)
gw_water
cocoac++算法贪心算法数据结构
文章目录题目要求一、解题思路二、解题过程1.数据结构2.求最小生成树(Kruskal算法)2.答案计算(TCD+SegementTree)AC代码题目要求A国有n座城市,编号从1到n,城市之间有m条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有q辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。一、解题思路本题求一条路径,使得其在不超过限制重量的前提下,载
- 算法备案 | 算法备案必要性、算法类型、备案流程
极创信息
人工智能AIGC
一、进行算法备案的必要性在当今的数字化时代,算法已经广泛应用于各个行业,引起了监管部门的高度关注,因为算法产品可能会带来一些潜在的风险。为了规范互联网信息服务中的算法推荐活动,抵制诸如深度生成合成、算法歧视、“大数据杀熟”、诱导沉迷等不合理应用,各个国家都先后出台了一系列关于算法管理的法律法规。在我国,《数据安全法》、《个人信息保护法》、《互联网信息服务算法推荐管理规定》等法律法规明确对算法的使用
- 集装箱智慧通关系统如何用AI技术重塑物流效率?
在全球贸易和物流高速发展的今天,港口、物流园区及企业的闸口管理面临巨大挑战——如何提升通关效率、保障货物安全并降低运营成本?集装箱智慧通关系统依托先进的AI视觉识别、物联网及大数据技术,为行业提供了智能化解决方案。核心技术:AI视觉+物联网赋能传统闸口依赖人工核验集装箱号、车辆信息,效率低且易出错。而智慧通关系统通过高精度摄像头+AI算法,可自动识别集装箱编号、货车车牌、货物类型等关键信息,准确率
- macOS生成密钥对教程
大大小小聪明
macossshgithub
在macOS下生成密钥对(如SSH密钥)可通过终端命令完成,以下是详细步骤:方法1:使用ssh-keygen生成SSH密钥对(推荐)打开终端通过Spotlight搜索(Command+空格)输入Terminal并打开。生成密钥对输入以下命令(推荐使用更安全的ed25519算法,或兼容性更好的RSA):#使用ed25519算法(更安全高效)ssh-keygen-ted25519-C"your_ema
- LabVIEW荧光微管图像模拟
LabVIEW开发
LabVIEW开发案例LabVIEW设备控制LabVIEW知识LabVIEW程序LabVIEW开发案例LabVIEW知识
利用LabVIEW平台,集成PI压电平台、Nikon荧光显微镜及AndorsCMOS相机等硬件,构建荧光微管滑行实验图像序列模拟系统。通过程序化模拟微管运动轨迹、荧光标记分布及显微成像过程,为生物医学领域微管跟踪算法测试、运动特性分析提供标准化仿真环境,解决传统实验中手动跟踪效率低、误差大及硬件漂移等问题。应用场景科研算法验证:高校及科研机构用于验证微管跟踪软件(如MTrack2)在不同运动轨迹下
- 【AI】AI大模型发展史:从理论探索到技术爆发
不想当程序汪的第N天
AI人工智能
一、早期探索阶段—理论与技术奠基1.1符号主义与连接主义的博弈20世纪50-70年代,符号主义AI主导研究方向,通过专家系统模拟人类逻辑推理,但受限于计算能力和数据规模。80年代连接主义AI兴起,以神经网络为核心,反向传播算法的提出为深度学习奠定基础。1.2神经网络初步实践1980年:卷积神经网络(CNN)雏形诞生1998年:LeNet-5模型成功应用于手写数字识别,成为首个商用深度学习模型关键局
- Python 中的集合(Set)详解:从基础操作到实际应用
面朝大海,春不暖,花不开
Python基础python开发语言
文章大纲引言:集合在Python中的重要性在Python编程中,集合(Set)是一种极为重要的内置数据结构,它以无序性和元素唯一性为主要特点。集合中的每个元素都是独一无二的,这使得它在处理数据去重、成员检测以及数学运算(如并集、交集)时表现出色。无论是进行大规模数据分析,还是优化算法效率,集合都能提供高效的解决方案。例如,在处理用户ID列表时,集合可以快速去除重复项,确保数据准确性。此外,集合与字
- LVS 负载均衡群集
2301_80329775
Linux系统管理lvs负载均衡android
前言在前面已经学习了使用Nginx、LVS做负载均衡群集,它们都具有各自的特点,本章将要介绍另一款比较流行的群集调度工具Haproxy。首先介绍负载均衡常用调度算法,然后介绍Haproxy搭建Web群集的方法,最后介绍Haproxy的参数优化和日志配置。一。案例分析1.案例概述Haproxy是目前比较流行的一种群集调度工具,同类群集调度工具有很多,如LVS和Nginx。相比较而言,LVS性能最好,
- .net实现内容推荐算法代码
.NET实现内容推荐算法代码在当今信息爆炸的时代,内容推荐算法变得至关重要。它能够根据用户的偏好和行为,为用户精准地推荐感兴趣的内容,提高用户体验。本文将详细介绍如何使用.NET(C#)实现一个简单的基于内容的推荐算法,并探讨其扩展优化方向。内容推荐算法简介内容推荐算法主要依据物品的属性匹配程度来进行推荐,适用于文章、商品等各类内容的推荐场景。其核心思想是通过分析用户的偏好和内容的特征,找出两者之
- 如何构建AI原生应用领域的高效SaaS架构
AI原生应用开发
AI-native架构ai
如何构建AI原生应用领域的高效SaaS架构关键词:AI原生应用、SaaS架构、微服务、容器化、机器学习模型部署、自动扩展、多租户隔离摘要:本文深入探讨如何构建面向AI原生应用的高效SaaS架构。我们将从基础概念出发,逐步解析AISaaS架构的核心组件、设计原则和最佳实践,并通过实际案例展示如何实现高性能、可扩展的AI服务交付平台。文章将涵盖从基础设施选择到模型部署,从多租户隔离到自动扩展的全方位技
- Python时域信号特征提取技术要点
路怜涯
本文还有配套的精品资源,点击获取简介:在机器学习领域,时域信号特征提取是数据预处理的关键环节,特别是对于时间序列数据。时域信号特征包括信号的基本特性量,如平均值、中值、峰值、谷值、峰谷差、方差、标准差、极值点、峭度与峰度、自相关函数、滑动窗口统计、傅立叶变换和小波分析等。使用Python中的NumPy、Pandas和SciPy库可以帮助我们计算这些特征,并为机器学习模型训练准备数据。本文将介绍如何
- OpenCV让Python实现人脸特征点检测
Python编程之道
Python编程之道opencvpython人工智能ai
OpenCV让Python实现人脸特征点检测关键词:OpenCV、Python、人脸检测、特征点定位、计算机视觉、Dlib、深度学习摘要:本文将深入探讨如何使用OpenCV和Python实现人脸特征点检测。我们将从基础概念开始,逐步介绍人脸检测和特征点定位的核心算法原理,包括传统的Haar级联检测器和基于深度学习的Dlib面部特征点检测器。文章将提供详细的代码实现和数学原理讲解,并通过实际项目案例
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等深度科研
Yolo566Q
chatgpt语言模型数据分析
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等
xiao5kou4chang6kai4
人工智能深度学习机器学习rnn语言模型lstm深度学习机器学习人工智能DeepSeek
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 淘客APP的用户行为分析与个性化推荐:架构师的算法实践
微赚淘客系统@聚娃科技
算法
淘客APP的用户行为分析与个性化推荐:架构师的算法实践大家好,我是阿可,微赚淘客系统及省赚客APP创始人,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我想和大家分享一下淘客APP的用户行为分析与个性化推荐的算法实践。在电商导购领域,个性化推荐是提升用户体验和转化率的关键。通过分析用户的行为数据,我们可以为用户提供符合其兴趣的商品推荐,从而增加用户的粘性和购买意愿。接下来,我将从用户行为数据采集、
- 分布式系统的强一致性基石:Raft共识算法深度解析与技术实现
LCG元
Python信息系统共识算法python区块链
目录一、Raft设计哲学与核心概念1.1可理解性设计三原则1.2核心数据结构定义二、核心机制实现解析2.1领导选举机制2.2日志复制机制三、异常处理与工程优化3.1典型故障场景处理3.2性能优化策略四、工业级实现关键代码4.1日志一致性检查4.2状态机应用逻辑五、Raft与其他协议对比六、生产环境最佳实践在分布式系统领域,Raft算法通过强领导者模型和模块化分解设计,将复杂的一致性难题转化为可落地
- 二分查找快速理解
作为数据结构接触到的入门第一个算法,很多人对它不以为然,但是作为小白学习还是很有必要的,循序渐进,打开算法的大门假如你要登录王者荣耀,当你这样做时,QQ或者微信必须核实你是否有其游戏的账户,因此在数据库中查找你的用户名和账号。如果你的用户名为king,腾讯可以从以A开头的部分开始查找,但更合乎逻辑的做法是从中间开始查找。二分查找是一种算法,要求输入是一个有序的元素列表,我们结合程序的话,如果要查找
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f