Hologres 助力飞猪双11实时数据大屏秒级响应

摘要:刚刚结束的2020天猫双11中,MaxCompute交互式分析(下称Hologres)+实时计算Flink搭建的云原生实时数仓首次在核心数据场景落地,为大数据平台创下一项新纪录。借此之际,我们将陆续推出云原生实时数仓双11实战系列内容,本文重点介绍Hologres如何落地阿里巴巴飞猪实时数仓场景,并助力飞猪双11实时数据大屏3秒起跳,全程0故障。

今年双十一较以往最大的变化就是活动的整体节奏从原来“单节”调整为今年的“双节”,自然地形成两波流量高峰,大屏和营销数据的统计周期变长,指标维度变得更多,同时集团GMV媒体大屏首次直接复用飞猪大屏链路数据,所以如何保障集团GMV媒体大屏、飞猪数据大屏以及双十一整体数据的实时、准确、稳定是一个比较大的挑战。

本次双十一飞猪实时大屏零点3秒起跳,全程0故障,顺利护航阿里巴巴集团媒体大屏,做到了指标精确、服务稳定、反馈实时。
而这一切都离不开大屏背后实时数据全链路的技术升级和保障。飞猪实时数据整体架构如下图所示:

Hologres 助力飞猪双11实时数据大屏秒级响应_第1张图片

下面将会介绍,为了实现快、准、稳的双11实时数据大屏,业务针对实时数据全链路做了哪些升级改进和优化。

一、公共层加固,抵御洪峰流量

抵御双十一流量洪峰,首先发力的是实时数据公共层。经过近两年的迭代完善,多端、多源的实时数据公共层已经实现了日志、交易、营销互动、服务域的全域覆盖,作业吞吐和资源效率也在不断的提升,本次双十一为了平稳通过流量双峰,对其进行了多轮的全链路的压测和进一步的夯实加固:

1)维表迁移,分散热点依赖

维表是实时公共层的核心逻辑和物理依赖,热点维表在大促时可能就是服务的风险点和瓶颈。飞猪商品表是各类实时作业依赖最多的Hbase维表,其中包括大促时流量暴涨的飞猪淘宝端流量公共层作业。去年通过对淘系PV流量提取的深度逻辑优化,将该维表的日常QPS由几十w降低到了几w,但随着后续点击公共层以及其他业务作业的不断新增依赖,日常QPS很快升到了5w+,大促压测时一路飙升到十多w,且维表所在的Hbase集群比较老旧且为公共集群,大促

你可能感兴趣的:(flink,大数据)