本文解决什么问题:在几乎不保证精度下降的前提下,轻量级模型创新设计
EfficientRepBiPAN 在关键点检测任务中 | GFLOPs从9.6降低至8.5, mAP50从0.921下降至0.912,mAP50-95从0.697提升至0.779
YOLO轻量化模型专栏:http://t.csdnimg.cn/AeaEF
论文:https://arxiv.org/pdf/2209.02976.pdf
摘要:多年来,YOLO 系列一直是高效目标检测的行业标准。YOLO 社区蓬勃发展,丰富了其在众多硬件平台和丰富场景中的使用。在这份技术报告力求将其极限推向新的高度,以坚定不移的行业应用心态向前迈进。考虑到真实环境中对速度和准确性的不同要求,作者广泛研究了来自工业界或学术界的最新目标检测进展。具体来说,从最近的网络设计、训练策略、测试技术、量化和优化方法中大量吸收了一些想