Pandas 是 Python 语言的一个扩展程序库,用于数据分析。
Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。
Pandas 名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)。
Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算)。
Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。
Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。
Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。
Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。
Series 是一种类似于一维数组的对象,它由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成。
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
安装 pandas 需要基础环境是 Python,开始前我们假定你已经安装了 Python 和 Pip。
使用 pip 安装 pandas:
pip install pandas
安装成功后,我们就可以导入 pandas 包使用:
import pandas
>>> import pandas
>>> pandas.__version__ # 查看版本
'1.1.5'
导入 pandas 一般使用别名 pd 来代替:
import pandas as pd
>>> import pandas as pd
>>> pd.__version__ # 查看版本
'1.1.5'
一个简单的 pandas 实例:
import pandas as pd
mydataset = {
'sites': ["Google", "Runoob", "Wiki"],
'number': [1, 2, 3]
}
myvar = pd.DataFrame(mydataset)
print(myvar)
执行以上代码,输出结果为:
出现此结果表明安装pandas成功
Pandas Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型。
Series 由索引(index)和列组成,函数如下:
pandas.Series( data, index, dtype, name, copy)
参数说明:
data:一组数据(ndarray 类型)。
index:数据索引标签,如果不指定,默认从 0 开始。
dtype:数据类型,默认会自己判断。
name:设置名称。
copy:拷贝数据,默认为 False。
创建一个简单的 Series 实例:
import pandas as pd
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar)
输出结果如下:
从上图可知,如果没有指定索引,索引值就从 0 开始,我们可以根据索引值读取数据:
import pandas as pd
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar[1])
输出结果如下:
2
我们可以指定索引值,如下实例:
import pandas as pd
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar)
输出结果如下:
根据索引值读取数据:
import pandas as pd
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar["y"])
输出结果如下:
Runoob
我们也可以使用 key/value 对象,类似字典来创建 Series:
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites)
print(myvar)
输出结果如下:
从上图可知,字典的 key 变成了索引值。
如果我们只需要字典中的一部分数据,只需要指定需要数据的索引即可,如下实例:
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2])
print(myvar)
输出结果如下:
设置 Series 名称参数:
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2], name="RUNOOB-Series-TEST" )
print(myvar)
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
DataFrame 构造方法如下:
pandas.DataFrame( data, index, columns, dtype, copy)
参数说明:
data:一组数据(ndarray、series, map, lists, dict 等类型)。
index:索引值,或者可以称为行标签。
columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
dtype:数据类型。
copy:拷贝数据,默认为 False。
Pandas DataFrame 是一个二维的数组结构,类似二维数组。
import pandas as pd
data = [['Google',10],['Runoob',12],['Wiki',13]]
df = pd.DataFrame(data,columns=['Site','Age'],dtype=float)
print(df)
输出结果如下:
以下实例使用 ndarrays 创建,ndarray 的长度必须相同, 如果传递了 index,则索引的长度应等于数组的长度。如果没有传递索引,则默认情况下,索引将是range(n),其中n是数组长度。
ndarrays 可以参考:NumPy Ndarray 对象
import pandas as pd
data = {'Site':['Google', 'Runoob', 'Wiki'], 'Age':[10, 12, 13]}
df = pd.DataFrame(data)
print (df)
输出结果如下:
从以上输出结果可以知道, DataFrame 数据类型一个表格,包含 rows(行) 和 columns(列):
还可以使用字典(key/value),其中字典的 key 为列名:
import pandas as pd
data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data)
print (df)
输出结果为:
a b c 0 1 2 NaN 1 5 10 20.0
没有对应的部分数据为 NaN。
Pandas 可以使用 loc 属性返回指定行的数据,如果没有设置索引,第一行索引为 0,第二行索引为 1,以此类推:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
# 数据载入到 DataFrame 对象
df = pd.DataFrame(data)
# 返回第一行
print(df.loc[0])
# 返回第二行
print(df.loc[1])
输出结果如下:
calories 420 duration 50 Name: 0, dtype: int64 calories 380 duration 40 Name: 1, dtype: int64
注意:返回结果其实就是一个 Pandas Series 数据。
也可以返回多行数据,使用 [[ ... ]] 格式,... 为各行的索引,以逗号隔开:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
# 数据载入到 DataFrame 对象
df = pd.DataFrame(data)
# 返回第一行和第二行
print(df.loc[[0, 1]])
输出结果为:
calories duration 0 420 50 1 380 40
注意:返回结果其实就是一个 Pandas DataFrame 数据。
我们可以指定索引值,如下实例:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
df = pd.DataFrame(data, index = ["day1", "day2", "day3"])
print(df)
输出结果为:
calories duration day1 420 50 day2 380 40 day3 390 45
Pandas 可以使用 loc 属性返回指定索引对应到某一行:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
df = pd.DataFrame(data, index = ["day1", "day2", "day3"])
# 指定索引
print(df.loc["day2"])
输出结果为:
calories 380 duration 40 Name: day2, dtype: int64
CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。
CSV 是一种通用的、相对简单的文件格式,被用户、商业和科学广泛应用。
Pandas 可以很方便的处理 CSV 文件,本文以 nba.csv 为例,你可以下载 nba.csv 或打开 nba.csv 查看。
import pandas as pd
df = pd.read_csv('nba.csv')
print(df.to_string())
to_string() 用于返回 DataFrame 类型的数据,如果不使用该函数,则输出结果为数据的前面 5 行和末尾 5 行,中间部分以 ... 代替。
import pandas as pd
df = pd.read_csv('nba.csv')
print(df)
输出结果为:
Name Team Number Position Age Height Weight College Salary 0 Avery Bradley Boston Celtics 0.0 PG 25.0 6-2 180.0 Texas 7730337.0 1 Jae Crowder Boston Celtics 99.0 SF 25.0 6-6 235.0 Marquette 6796117.0 2 John Holland Boston Celtics 30.0 SG 27.0 6-5 205.0 Boston University NaN 3 R.J. Hunter Boston Celtics 28.0 SG 22.0 6-5 185.0 Georgia State 1148640.0 4 Jonas Jerebko Boston Celtics 8.0 PF 29.0 6-10 231.0 NaN 5000000.0 .. ... ... ... ... ... ... ... ... ... 453 Shelvin Mack Utah Jazz 8.0 PG 26.0 6-3 203.0 Butler 2433333.0 454 Raul Neto Utah Jazz 25.0 PG 24.0 6-1 179.0 NaN 900000.0 455 Tibor Pleiss Utah Jazz 21.0 C 26.0 7-3 256.0 NaN 2900000.0 456 Jeff Withey Utah Jazz 24.0 C 26.0 7-0 231.0 Kansas 947276.0 457 NaN NaN NaN NaN NaN NaN NaN NaN NaN
我们也可以使用 to_csv() 方法将 DataFrame 存储为 csv 文件:
import pandas as pd
# 三个字段 name, site, age
nme = ["Google", "Runoob", "Taobao", "Wiki"]
st = ["www.google.com", "www.runoob.com", "www.taobao.com", "www.wikipedia.org"]
ag = [90, 40, 80, 98]
# 字典
dict = {'name': nme, 'site': st, 'age': ag}
df = pd.DataFrame(dict)
# 保存 dataframe
df.to_csv('site.csv')
执行成功后,我们打开 site.csv 文件,显示结果如下:
head( n ) 方法用于读取前面的 n 行,如果不填参数 n ,默认返回 5 行。
import pandas as pd
df = pd.read_csv('nba.csv')
print(df.head())
输出结果为:
Name Team Number Position Age Height Weight College Salary 0 Avery Bradley Boston Celtics 0.0 PG 25.0 6-2 180.0 Texas 7730337.0 1 Jae Crowder Boston Celtics 99.0 SF 25.0 6-6 235.0 Marquette 6796117.0 2 John Holland Boston Celtics 30.0 SG 27.0 6-5 205.0 Boston University NaN 3 R.J. Hunter Boston Celtics 28.0 SG 22.0 6-5 185.0 Georgia State 1148640.0 4 Jonas Jerebko Boston Celtics 8.0 PF 29.0 6-10 231.0 NaN 5000000.0
import pandas as pd
df = pd.read_csv('nba.csv')
print(df.head(10))
输出结果为:
Name Team Number Position Age Height Weight College Salary 0 Avery Bradley Boston Celtics 0.0 PG 25.0 6-2 180.0 Texas 7730337.0 1 Jae Crowder Boston Celtics 99.0 SF 25.0 6-6 235.0 Marquette 6796117.0 2 John Holland Boston Celtics 30.0 SG 27.0 6-5 205.0 Boston University NaN 3 R.J. Hunter Boston Celtics 28.0 SG 22.0 6-5 185.0 Georgia State 1148640.0 4 Jonas Jerebko Boston Celtics 8.0 PF 29.0 6-10 231.0 NaN 5000000.0 5 Amir Johnson Boston Celtics 90.0 PF 29.0 6-9 240.0 NaN 12000000.0 6 Jordan Mickey Boston Celtics 55.0 PF 21.0 6-8 235.0 LSU 1170960.0 7 Kelly Olynyk Boston Celtics 41.0 C 25.0 7-0 238.0 Gonzaga 2165160.0 8 Terry Rozier Boston Celtics 12.0 PG 22.0 6-2 190.0 Louisville 1824360.0 9 Marcus Smart Boston Celtics 36.0 PG 22.0 6-4 220.0 Oklahoma State 3431040.0
tail( n ) 方法用于读取尾部的 n 行,如果不填参数 n ,默认返回 5 行,空行各个字段的值返回 NaN。
import pandas as pd
df = pd.read_csv('nba.csv')
print(df.tail())
输出结果为:
Name Team Number Position Age Height Weight College Salary 453 Shelvin Mack Utah Jazz 8.0 PG 26.0 6-3 203.0 Butler 2433333.0 454 Raul Neto Utah Jazz 25.0 PG 24.0 6-1 179.0 NaN 900000.0 455 Tibor Pleiss Utah Jazz 21.0 C 26.0 7-3 256.0 NaN 2900000.0 456 Jeff Withey Utah Jazz 24.0 C 26.0 7-0 231.0 Kansas 947276.0 457 NaN NaN NaN NaN NaN NaN NaN NaN NaN
import pandas as pd
df = pd.read_csv('nba.csv')
print(df.tail(10))
输出结果为:
Name Team Number Position Age Height Weight College Salary 448 Gordon Hayward Utah Jazz 20.0 SF 26.0 6-8 226.0 Butler 15409570.0 449 Rodney Hood Utah Jazz 5.0 SG 23.0 6-8 206.0 Duke 1348440.0 450 Joe Ingles Utah Jazz 2.0 SF 28.0 6-8 226.0 NaN 2050000.0 451 Chris Johnson Utah Jazz 23.0 SF 26.0 6-6 206.0 Dayton 981348.0 452 Trey Lyles Utah Jazz 41.0 PF 20.0 6-10 234.0 Kentucky 2239800.0 453 Shelvin Mack Utah Jazz 8.0 PG 26.0 6-3 203.0 Butler 2433333.0 454 Raul Neto Utah Jazz 25.0 PG 24.0 6-1 179.0 NaN 900000.0 455 Tibor Pleiss Utah Jazz 21.0 C 26.0 7-3 256.0 NaN 2900000.0 456 Jeff Withey Utah Jazz 24.0 C 26.0 7-0 231.0 Kansas 947276.0 457 NaN NaN NaN NaN NaN NaN NaN NaN NaN
info() 方法返回表格的一些基本信息:
import pandas as pd
df = pd.read_csv('nba.csv')
print(df.info())
输出结果为:
RangeIndex: 458 entries, 0 to 457 # 行数,458 行,第一行编号为 0 Data columns (total 9 columns): # 列数,9列 # Column Non-Null Count Dtype # 各列的数据类型 --- ------ -------------- ----- 0 Name 457 non-null object 1 Team 457 non-null object 2 Number 457 non-null float64 3 Position 457 non-null object 4 Age 457 non-null float64 5 Height 457 non-null object 6 Weight 457 non-null float64 7 College 373 non-null object # non-null,意思为非空的数据 8 Salary 446 non-null float64 dtypes: float64(4), object(5) # 类型
non-null 为非空数据,我们可以看到上面的信息中,总共 458 行,College 字段的空值最多。
数据清洗是对一些没有用的数据进行处理的过程。
很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。
在这个教程中,我们将利用 Pandas包来进行数据清洗。
本文使用到的测试数据 property-data.csv 如下:
上表包含了四种空数据:
如果我们要删除包含空字段的行,可以使用 dropna() 方法,语法格式如下:
DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
参数说明:
我们可以通过 isnull() 判断各个单元格是否为空。
import pandas as pd
df = pd.read_csv('property-data.csv')
print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())
以上实例输出结果如下:
以上例子中我们看到 Pandas 把 n/a 和 NA 当作空数据,na 不是空数据,不符合我们要求,我们可以指定空数据类型:
import pandas as pd
missing_values = ["n/a", "na", "--"]
df = pd.read_csv('property-data.csv', na_values = missing_values)
print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())
以上实例输出结果如下:
接下来的实例演示了删除包含空数据的行。
import pandas as pd
df = pd.read_csv('property-data.csv')
new_df = df.dropna()
print(new_df.to_string())
以上实例输出结果如下:
注意:默认情况下,dropna() 方法返回一个新的 DataFrame,不会修改源数据。
如果你要修改源数据 DataFrame, 可以使用 inplace = True 参数:
import pandas as pd
df = pd.read_csv('property-data.csv')
df.dropna(inplace = True)
print(df.to_string())
以上实例输出结果如下:
我们也可以移除指定列有空值的行:
移除 ST_NUM 列中字段值为空的行:
import pandas as pd
df = pd.read_csv('property-data.csv')
df.dropna(subset=['ST_NUM'], inplace = True)
print(df.to_string())
以上实例输出结果如下:
我们也可以 fillna() 方法来替换一些空字段:
使用 12345 替换空字段:
import pandas as pd
df = pd.read_csv('property-data.csv')
df.fillna(12345, inplace = True)
print(df.to_string())
以上实例输出结果如下:
我们也可以指定某一个列来替换数据:
使用 12345 替换 PID 为空数据:
import pandas as pd
df = pd.read_csv('property-data.csv')
df['PID'].fillna(12345, inplace = True)
print(df.to_string())
以上实例输出结果如下:
替换空单元格的常用方法是计算列的均值、中位数值或众数。
Pandas使用 mean()、median() 和 mode() 方法计算列的均值(所有值加起来的平均值)、中位数值(排序后排在中间的数)和众数(出现频率最高的数)。
使用 mean() 方法计算列的均值并替换空单元格:
import pandas as pd
df = pd.read_csv('property-data.csv')
x = df["ST_NUM"].mean()
df["ST_NUM"].fillna(x, inplace = True)
print(df.to_string())
以上实例输出结果如下,红框为计算的均值替换来空单元格:
使用 median() 方法计算列的中位数并替换空单元格:
import pandas as pd
df = pd.read_csv('property-data.csv')
x = df["ST_NUM"].median()
df["ST_NUM"].fillna(x, inplace = True)
print(df.to_string())
以上实例输出结果如下,红框为计算的中位数替换来空单元格:
使用 mode() 方法计算列的众数并替换空单元格:
import pandas as pd
df = pd.read_csv('property-data.csv')
x = df["ST_NUM"].mode()
df["ST_NUM"].fillna(x, inplace = True)
print(df.to_string())
以上实例输出结果如下,红框为计算的众数替换来空单元格:
数据格式错误的单元格会使数据分析变得困难,甚至不可能。
我们可以通过包含空单元格的行,或者将列中的所有单元格转换为相同格式的数据。
以下实例会格式化日期:
import pandas as pd
# 第三个日期格式错误
data = {
"Date": ['2020/12/01', '2020/12/02' , '20201226'],
"duration": [50, 40, 45]
}
df = pd.DataFrame(data, index = ["day1", "day2", "day3"])
df['Date'] = pd.to_datetime(df['Date'])
print(df.to_string())
以上实例输出结果如下:
Date duration day1 2020-12-01 50 day2 2020-12-02 40 day3 2020-12-26 45
数据错误也是很常见的情况,我们可以对错误的数据进行替换或移除。
以下实例会替换错误年龄的数据:
import pandas as pd
person = {
"name": ['Google', 'Runoob' , 'Taobao'],
"age": [50, 40, 12345] # 12345 年龄数据是错误的
}
df = pd.DataFrame(person)
df.loc[2, 'age'] = 30 # 修改数据
print(df.to_string())
以上实例输出结果如下:
name age 0 Google 50 1 Runoob 40 2 Taobao 30
也可以设置条件语句:
将 age 大于 120 的设置为 120:
import pandas as pd
person = {
"name": ['Google', 'Runoob' , 'Taobao'],
"age": [50, 200, 12345]
}
df = pd.DataFrame(person)
for x in df.index:
if df.loc[x, "age"] > 120:
df.loc[x, "age"] = 120
print(df.to_string())
以上实例输出结果如下:
name age 0 Google 50 1 Runoob 120 2 Taobao 120
也可以将错误数据的行删除:
将 age 大于 120 的删除:
import pandas as pd
person = {
"name": ['Google', 'Runoob' , 'Taobao'],
"age": [50, 40, 12345] # 12345 年龄数据是错误的
}
df = pd.DataFrame(person)
for x in df.index:
if df.loc[x, "age"] > 120:
df.drop(x, inplace = True)
print(df.to_string())
以上实例输出结果如下:
name age 0 Google 50 1 Runoob 40
如果我们要清洗重复数据,可以使用 duplicated() 和 drop_duplicates() 方法。
如果对应的数据是重复的,duplicated() 会返回 True,否则返回 False。
import pandas as pd
person = {
"name": ['Google', 'Runoob', 'Runoob', 'Taobao'],
"age": [50, 40, 40, 23]
}
df = pd.DataFrame(person)
print(df.duplicated())
以上实例输出结果如下:
0 False 1 False 2 True 3 False dtype: bool
删除重复数据,可以直接使用drop_duplicates() 方法。
import pandas as pd
persons = {
"name": ['Google', 'Runoob', 'Runoob', 'Taobao'],
"age": [50, 40, 40, 23]
}
df = pd.DataFrame(persons)
df.drop_duplicates(inplace = True)
print(df)
以上实例输出结果如下:
name age 0 Google 50 1 Runoob 40 3 Taobao 23
以下列出了 Pandas 常用的一些函数及使用实例:
函数 | 说明 |
---|---|
pd.read_csv(filename) | 读取 CSV 文件; |
pd.read_excel(filename) | 读取 Excel 文件; |
pd.read_sql(query, connection_object) | 从 SQL 数据库读取数据; |
pd.read_json(json_string) | 从 JSON 字符串中读取数据; |
pd.read_html(url) | 从 HTML 页面中读取数据。 |
import pandas as pd
# 从 CSV 文件中读取数据
df = pd.read_csv('data.csv')
# 从 Excel 文件中读取数据
df = pd.read_excel('data.xlsx')
# 从 SQL 数据库中读取数据
import sqlite3
conn = sqlite3.connect('database.db')
df = pd.read_sql('SELECT * FROM table_name', conn)
# 从 JSON 字符串中读取数据
json_string = '{"name": "John", "age": 30, "city": "New York"}'
df = pd.read_json(json_string)
# 从 HTML 页面中读取数据
url = 'https://www.runoob.com'
dfs = pd.read_html(url)
df = dfs[0] # 选择第一个数据框
函数 | 说明 |
---|---|
df.head(n) | 显示前 n 行数据; |
df.tail(n) | 显示后 n 行数据; |
df.info() | 显示数据的信息,包括列名、数据类型、缺失值等; |
df.describe() | 显示数据的基本统计信息,包括均值、方差、最大值、最小值等; |
df.shape | 显示数据的行数和列数。 |
# 显示前五行数据
df.head()
# 显示后五行数据
df.tail()
# 显示数据信息
df.info()
# 显示基本统计信息
df.describe()
# 显示数据的行数和列数
df.shape
import pandas as pd
data = [
{"name": "Google", "likes": 25, "url": "https://www.google.com"},
{"name": "Runoob", "likes": 30, "url": "https://www.runoob.com"},
{"name": "Taobao", "likes": 35, "url": "https://www.taobao.com"}
]
df = pd.DataFrame(data)
# 显示前两行数据
print(df.head(2))
# 显示前最后一行数据
print(df.tail(1))
以上实例输出结果为:
name likes url 0 Google 25 https://www.google.com 1 Runoob 30 https://www.runoob.com name likes url 2 Taobao 35 https://www.taobao.com
函数 | 说明 |
---|---|
df.dropna() | 删除包含缺失值的行或列; |
df.fillna(value) | 将缺失值替换为指定的值; |
df.replace(old_value, new_value) | 将指定值替换为新值; |
df.duplicated() | 检查是否有重复的数据; |
df.drop_duplicates() | 删除重复的数据。 |
# 删除包含缺失值的行或列
df.dropna()
# 将缺失值替换为指定的值
df.fillna(0)
# 将指定值替换为新值
df.replace('old_value', 'new_value')
# 检查是否有重复的数据
df.duplicated()
# 删除重复的数据
df.drop_duplicates()
函数 | 说明 |
---|---|
df[column_name] | 选择指定的列; |
df.loc[row_index, column_name] | 通过标签选择数据; |
df.iloc[row_index, column_index] | 通过位置选择数据; |
df.ix[row_index, column_name] | 通过标签或位置选择数据; |
df.filter(items=[column_name1, column_name2]) | 选择指定的列; |
df.filter(regex='regex') | 选择列名匹配正则表达式的列; |
df.sample(n) | 随机选择 n 行数据。 |
# 选择指定的列
df['column_name']
# 通过标签选择数据
df.loc[row_index, column_name]
# 通过位置选择数据
df.iloc[row_index, column_index]
# 通过标签或位置选择数据
df.ix[row_index, column_name]
# 选择指定的列
df.filter(items=['column_name1', 'column_name2'])
# 选择列名匹配正则表达式的列
df.filter(regex='regex')
# 随机选择 n 行数据
df.sample(n=5)
函数 | 说明 |
---|---|
df.sort_values(column_name) | 按照指定列的值排序; |
df.sort_values([column_name1, column_name2], ascending=[True, False]) | 按照多个列的值排序; |
df.sort_index() | 按照索引排序。 |
# 按照指定列的值排序
df.sort_values('column_name')
# 按照多个列的值排序
df.sort_values(['column_name1', 'column_name2'], ascending=[True, False])
# 按照索引排序
df.sort_index()
函数 | 说明 |
---|---|
df.groupby(column_name) | 按照指定列进行分组; |
df.aggregate(function_name) | 对分组后的数据进行聚合操作; |
df.pivot_table(values, index, columns, aggfunc) | 生成透视表。 |
# 按照指定列进行分组
df.groupby('column_name')
# 对分组后的数据进行聚合操作
df.aggregate('function_name')
# 生成透视表
df.pivot_table(values='value', index='index_column', columns='column_name', aggfunc='function_name')
函数 | 说明 |
---|---|
pd.concat([df1, df2]) | 将多个数据框按照行或列进行合并; |
pd.merge(df1, df2, on=column_name) | 按照指定列将两个数据框进行合并。 |
# 将多个数据框按照行或列进行合并
df = pd.concat([df1, df2])
# 按照指定列将两个数据框进行合并
df = pd.merge(df1, df2, on='column_name')
函数 | 说明 |
---|---|
df.loc[row_indexer, column_indexer] | 按标签选择行和列。 |
df.iloc[row_indexer, column_indexer] | 按位置选择行和列。 |
df[df['column_name'] > value] | 选择列中满足条件的行。 |
df.query('column_name > value') | 使用字符串表达式选择列中满足条件的行。 |
函数 | 说明 |
---|---|
df.describe() | 计算基本统计信息,如均值、标准差、最小值、最大值等。 |
df.mean() | 计算每列的平均值。 |
df.median() | 计算每列的中位数。 |
df.mode() | 计算每列的众数。 |
df.count() | 计算每列非缺失值的数量。 |
假设我们有如下的 JSON 数据,数据保存到 data.json 文件:
[
{
"name": "Alice",
"age": 25,
"gender": "female",
"score": 80
},
{
"name": "Bob",
"age": null,
"gender": "male",
"score": 90
},
{
"name": "Charlie",
"age": 30,
"gender": "male",
"score": null
},
{
"name": "David",
"age": 35,
"gender": "male",
"score": 70
}
]
我们可以使用 Pandas 读取 JSON 数据,并进行数据清洗和处理、数据选择和过滤、数据统计和描述等操作,具体如下:
import pandas as pd
# 读取 JSON 数据
df = pd.read_json('data.json')
# 删除缺失值
df = df.dropna()
# 用指定的值填充缺失值
df = df.fillna({'age': 0, 'score': 0})
# 重命名列名
df = df.rename(columns={'name': '姓名', 'age': '年龄', 'gender': '性别', 'score': '成绩'})
# 按成绩排序
df = df.sort_values(by='成绩', ascending=False)
# 按性别分组并计算平均年龄和成绩
grouped = df.groupby('性别').agg({'年龄': 'mean', '成绩': 'mean'})
# 选择成绩大于等于90的行,并只保留姓名和成绩两列
df = df.loc[df['成绩'] >= 90, ['姓名', '成绩']]
# 计算每列的基本统计信息
stats = df.describe()
# 计算每列的平均值
mean = df.mean()
# 计算每列的中位数
median = df.median()
# 计算每列的众数
mode = df.mode()
# 计算每列非缺失值的数量
count = df.count()
输出结果如下:
# df 姓名 年龄 性别 成绩 1 Bob 0 male 90 # grouped 年龄 成绩 性别 female 25.000000 80 male 27.500000 80 # stats 成绩 count 1.0 mean 90.0 std NaN min 90.0 25% 90.0 50% 90.0 75% 90.0 max 90.0 # mean 成绩 90.0 dtype: float64 # median 成绩 90.0 dtype: float64 # mode 姓名 成绩 0 Bob 90.0 # count 姓名 1 成绩 1 dtype: int64