C语言之杨辉三角的算法

        今天我们研究一下杨辉三角的基础算法        

C语言之杨辉三角的算法_第1张图片

性质

  1. 每个数等于它上方两数之和。

  2. 每行数字左右对称,由1开始逐渐变大。

  3. 第n行的数字有n项。

  4. 前n行共[(1+n)n]/2 个数。

  5. 第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

  6. 第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。

  7. 每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)

  8. (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

  9. 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。

  10. 将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。11^0=1,11^1=1x10^0+1×10^1=11,11^2=1×10^0+2x10^1+1x10^2=121,11^3=1x10^0+3×10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=14641,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1×10^5=161051。

  11. 第n行数字的和为2^(n-1)。1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。

  12. 斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。

  13. 将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。

  14. 代码实现

    #include 
    #include 
    int main()
    {
        int s = 1, h;                    // 数值和高度
        int i, j;                        // 循环计数
        scanf("%d", &h);                 // 输入层数
        printf("1\n");                   // 输出第一个 1
        for (i = 2; i <= h; s = 1, i++)         // 行数 i 从 2 到层高
        {
            printf("1 ");                // 第一个 1
            for (j = 1; j <= i - 2; j++) // 列位置 j 绕过第一个直接开始循环
                //printf("%d ", (s = (i - j) / j * s));
                printf("%d ", (s = (i - j) * s / j));
            printf("1\n");               // 最后一个 1,换行
        }
                   
        return 0;
    }

你可能感兴趣的:(算法)