JUC并发编程(4)(自定义线程池 + 共享模型之工具1)

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)

笔记内容来源于黑马程序员教学视频

一、共享模型之工具1

①:线程池

1、自定义线程池

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第1张图片

步骤1:自定义拒绝策略接口

@FunctionalInterface //拒绝策略
interface RejectPolicy{
    void reject(BlockingQueue queue,T task);
}

步骤2:自定义任务队列

class BlockingQueue{
    //阻塞队列,存放任务
    private Deque queue = new ArrayDeque<>();
    //队列的最大容量
    private int capacity;
    //锁
    private ReentrantLock lock = new ReentrantLock();
    //生产者条件变量
    private Condition fullWaitSet = lock.newCondition();
    //消费者条件变量
    private Condition emptyWaitSet = lock.newCondition();
    //构造方法
    public BlockingQueue(int capacity) {
        this.capacity = capacity;
    }
    //超时阻塞获取
    public T poll(long timeout, TimeUnit unit){
        lock.lock();
        //将时间转换为纳秒
        long nanoTime = unit.toNanos(timeout);
        try{
            while(queue.size() == 0){
                try {
                    //等待超时依旧没有获取,返回null
                    if(nanoTime <= 0){
                        return null;
                    }
                    //该方法返回的是剩余时间
                    nanoTime = emptyWaitSet.awaitNanos(nanoTime);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.pollFirst();
            fullWaitSet.signal();
            return t;
        }finally {
            lock.unlock();
        }
    }
    //阻塞获取
    public T take(){
        lock.lock();
        try{
            while(queue.size() == 0){
                try {
                    emptyWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.pollFirst();
            fullWaitSet.signal();
            return t;
        }finally {
            lock.unlock();
        }
    }
    //阻塞添加
    public void put(T t){
        lock.lock();
        try{
            while (queue.size() == capacity){
                try {
                    System.out.println(Thread.currentThread().toString() + "等待加入任务队列:" + t.toString());
                    fullWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            System.out.println(Thread.currentThread().toString() + "加入任务队列:" + t.toString());
            queue.addLast(t);
            emptyWaitSet.signal();
        }finally {
            lock.unlock();
        }
    }
    //超时阻塞添加
    public boolean offer(T t,long timeout,TimeUnit timeUnit){
        lock.lock();
        try{
            long nanoTime = timeUnit.toNanos(timeout);
            while (queue.size() == capacity){
                try {
                    if(nanoTime <= 0){
                        System.out.println("等待超时,加入失败:" + t);
                        return false;
                    }
                    System.out.println(Thread.currentThread().toString() + "等待加入任务队列:" + t.toString());
                    nanoTime = fullWaitSet.awaitNanos(nanoTime);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            System.out.println(Thread.currentThread().toString() + "加入任务队列:" + t.toString());
            queue.addLast(t);
            emptyWaitSet.signal();
            return true;
        }finally {
            lock.unlock();
        }
    }
    public int size(){
        lock.lock();
        try{
            return queue.size();
        }finally{
            lock.unlock();
        }
    }
    //从形参接收拒绝策略的put方法
    public void tryPut(RejectPolicy rejectPolicy,T task){
        lock.lock();
        try{
            if(queue.size() == capacity){
                rejectPolicy.reject(this,task);
            }else{
                System.out.println("加入任务队列:" + task);
                queue.addLast(task);
                emptyWaitSet.signal();
            }
        }finally {
            lock.unlock();
        }
    }
}

步骤3:自定义线程池

class ThreadPool{
    //阻塞队列
    BlockingQueue taskQue;
    //线程集合
    HashSet workers = new HashSet<>();
    //拒绝策略
    private RejectPolicy rejectPolicy;
    //构造方法
    public ThreadPool(int coreSize,long timeout,TimeUnit timeUnit,int queueCapacity,RejectPolicy rejectPolicy){
        this.coreSize = coreSize;
        this.timeout = timeout;
        this.timeUnit = timeUnit;
        this.rejectPolicy = rejectPolicy;
        taskQue = new BlockingQueue(queueCapacity);
    }
    //线程数
    private int coreSize;
    //任务超时时间
    private long timeout;
    //时间单元
    private TimeUnit timeUnit;
    //线程池的执行方法
    public void execute(Runnable task){
        //当线程数大于等于coreSize的时候,将任务放入阻塞队列
        //当线程数小于coreSize的时候,新建一个Worker放入workers
        //注意workers类不是线程安全的, 需要加锁
        synchronized (workers){
            if(workers.size() >= coreSize){
//                taskQue.put(task);
                //死等
                //带超时等待
                //让调用者放弃执行任务
                //让调用者抛出异常
                //让调用者自己执行任务
                taskQue.tryPut(rejectPolicy,task);
            }else {
                Worker worker = new Worker(task);
                System.out.println(Thread.currentThread().toString() + "新增worker:" + worker + ",task:" + task);
                workers.add(worker);
                worker.start();
            }
        }
    }

    //工作类
    class Worker extends Thread{

        private Runnable task;

        public Worker(Runnable task){
            this.task = task;
        }

        @Override
        public void run() {
            //巧妙的判断
            while(task != null || (task = taskQue.poll(timeout,timeUnit)) != null){
                try{
                    System.out.println(Thread.currentThread().toString() + "正在执行:" + task);
                    task.run();
                }catch (Exception e){

                }finally {
                    task = null;
                }
            }
            synchronized (workers){
                System.out.println(Thread.currentThread().toString() + "worker被移除:" + this.toString());
                workers.remove(this);
            }
        }
    }
}

步骤4:编写测试类

public class ThreadPoolTest {
    public static void main(String[] args) {
        ThreadPool threadPool = new ThreadPool(1, 1000, TimeUnit.MILLISECONDS, 1, (queue,task)->{
                    //死等
//                    queue.put(task);
            //带超时等待
//            queue.offer(task, 1500, TimeUnit.MILLISECONDS);
            //让调用者放弃任务执行
//            System.out.println("放弃:" + task);
            //让调用者抛出异常
//            throw new RuntimeException("任务执行失败" + task);
            //让调用者自己执行任务
            task.run();
                });
        for (int i = 0; i <3; i++) {
            int j = i;
            threadPool.execute(()->{
                try {
                    System.out.println(Thread.currentThread().toString() + "执行任务:" + j);
                    Thread.sleep(1000L);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            });
        }
    }
}

2、ThreadPoolExecutor

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第2张图片

说明:

  • ScheduledThreadPoolExecutor是带调度的线程池
  • ThreadPoolExecutor是不带调度的线程池
01. 线程池状态

ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量

状态名 高3位 接收新任务 处理阻塞队列任务 说明
RUNNING 111 Y Y
SHUTDOWN 000 N Y 不会接收新任务,但会处理阻塞队列剩余 任务
STOP 001 N N 会中断正在执行的任务,并抛弃阻塞队列 任务
TIDYING 010 任务全执行完毕,活动线程为 0 即将进入 终结
TERMINATED 011 终结状态

从数字上比较,TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING

这些信息存储在一个原子变量 ctl 中,目的是将线程池状态与线程个数合二为一,这样就可以用一次 cas 原子操作 进行赋值

// c 为旧值, ctlOf 返回结果为新值
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))));
// rs 为高 3 位代表线程池状态, wc 为低 29 位代表线程个数,ctl 是合并它们
private static int ctlOf(int rs, int wc) { return rs | wc; }
02. 构造方法
public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler)
  • corePoolSize 核心线程数目 (最多保留的线程数)
  • maximumPoolSize 最大线程数目
  • keepAliveTime 生存时间 - 针对救急线程
  • unit 时间单位 - 针对救急线程
  • workQueue 阻塞队列
  • threadFactory 线程工厂 - 可以为线程创建时起个好名字
  • handler 拒绝策略
03. 工作方式

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第3张图片

  • 线程池中刚开始没有线程,当一个任务提交给线程池后,线程池会创建一个新线程来执行任务。

  • 当线程数达到 corePoolSize 并没有线程空闲,这时再加入任务,新加的任务会被加入workQueue 队列排 队,直到有空闲的线程。

  • 如果队列选择了有界队列,那么任务超过了队列大小时,会创建 maximumPoolSize - corePoolSize 数目的线程来救急。

  • 如果线程到达 maximumPoolSize 仍然有新任务这时会执行拒绝策略。拒绝策略 jdk 提供了 4 种实现,其它 著名框架也提供了实现

    • AbortPolicy 让调用者抛出 RejectedExecutionException 异常,这是默认策略
    • CallerRunsPolicy 让调用者运行任务
    • DiscardPolicy 放弃本次任务
    • DiscardOldestPolicy 放弃队列中最早的任务,本任务取而代之
    • Dubbo 的实现,在抛出 RejectedExecutionException 异常之前会记录日志,并 dump 线程栈信息,方 便定位问题
    • Netty 的实现,是创建一个新线程来执行任务
    • ActiveMQ 的实现,带超时等待(60s)尝试放入队列,类似我们之前自定义的拒绝策略
    • PinPoint 的实现,它使用了一个拒绝策略链,会逐一尝试策略链中每种拒绝策略
  • 当高峰过去后,超过corePoolSize 的救急线程如果一段时间没有任务做,需要结束节省资源,这个时间由 keepAliveTime 和 unit 来控制。

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第4张图片

根据这个构造方法,JDK Executors 类中提供了众多工厂方法来创建各种用途的线程池。

04. newFixedThreadPool

创建固定大小线程池

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue());
}

内部调用了:ThreadPoolExecutor的一个构造方法

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue workQueue) {
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         Executors.defaultThreadFactory(), defaultHandler);
}

默认工厂以及默认构造线程的方法:

DefaultThreadFactory() {
    SecurityManager s = System.getSecurityManager();
    group = (s != null) ? s.getThreadGroup() :
    Thread.currentThread().getThreadGroup();
    namePrefix = "pool-" +
        poolNumber.getAndIncrement() +
        "-thread-";
}

public Thread newThread(Runnable r) {
    Thread t = new Thread(group, r,
                          namePrefix + threadNumber.getAndIncrement(),
                          0);
    if (t.isDaemon())
        t.setDaemon(false);
    if (t.getPriority() != Thread.NORM_PRIORITY)
        t.setPriority(Thread.NORM_PRIORITY);
    return t;
}

默认拒绝策略:抛出异常

private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();

特点

  • 核心线程数 == 最大线程数(没有救急线程被创建),因此也无需超时时间
  • 阻塞队列是无界的,可以放任意数量的任务

评价 适用于任务量已知,相对耗时的任务

05. newCachedThreadPool

创建带缓冲的线程池

public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue());
}

特点

  • 核心线程数是 0, 最大线程数是 Integer.MAX_VALUE,救急线程的空闲生存时间是 60s,

    • 意味着全部都是救急线程(60s 后可以回收)
    • 救急线程可以无限创建
  • 队列采用了 SynchronousQueue 实现特点是,它没有容量,没有线程来取是放不进去的(一手交钱、一手交货)

SynchronousQueue<Integer> integers = new SynchronousQueue<>();
new Thread(() -> {
    try {
        log.debug("putting {} ", 1);
        integers.put(1);
        log.debug("{} putted...", 1);
        log.debug("putting...{} ", 2);
        integers.put(2);
        log.debug("{} putted...", 2);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t1").start();
sleep(1);
new Thread(() -> {
    try {
        log.debug("taking {}", 1);
        integers.take();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t2").start();
sleep(1);
new Thread(() -> {
    try {
        log.debug("taking {}", 2);
        integers.take();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t3").start();

输出

11:48:15.500 c.TestSynchronousQueue [t1] - putting 1 
11:48:16.500 c.TestSynchronousQueue [t2] - taking 1 
11:48:16.500 c.TestSynchronousQueue [t1] - 1 putted... 
11:48:16.500 c.TestSynchronousQueue [t1] - putting...2 
11:48:17.502 c.TestSynchronousQueue [t3] - taking 2 
11:48:17.503 c.TestSynchronousQueue [t1] - 2 putted... 

评价 整个线程池表现为线程数会根据任务量不断增长,没有上限,当任务执行完毕,空闲 1分钟后释放线 程。 适合任务数比较密集,但每个任务执行时间较短的情况

06. newSingleThreadExecutor

单线程线程池

public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue()));
}

使用场景:

希望多个任务排队执行。线程数固定为 1,任务数多于 1 时,会放入无界队列排队。任务执行完毕,这唯一的线程 也不会被释放。

区别:

  • 自己创建一个单线程串行执行任务,如果任务执行失败而终止那么没有任何补救措施,而线程池还会新建一 个线程,保证池的正常工作

  • Executors.newSingleThreadExecutor() 线程个数始终为1,不能修改

    • FinalizableDelegatedExecutorService 应用的是装饰器模式,在调用构造方法时将ThreadPoolExecutor对象传给了内部的ExecutorService接口。只对外暴露了 ExecutorService 接口,因此不能调用 ThreadPoolExecutor 中特有的方法,也不能重新设置线程池的大小。
  • Executors.newFixedThreadPool(1) 初始时为1,以后还可以修改

    • 对外暴露的是 ThreadPoolExecutor 对象,可以强转后调用 setCorePoolSize 等方法进行修改
07. 提交任务
// 执行任务
void execute(Runnable command);
// 提交任务 task,用返回值 Future 获得任务执行结果
<T> Future<T> submit(Callable<T> task);
// 提交 tasks 中所有任务
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
    throws InterruptedException;
// 提交 tasks 中所有任务,带超时时间,时间超时后,会放弃执行后面的任务
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                              long timeout, TimeUnit unit)
    throws InterruptedException;
// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消
<T> T invokeAny(Collection<? extends Callable<T>> tasks)
    throws InterruptedException, ExecutionException;
// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消,带超时时间
<T> T invokeAny(Collection<? extends Callable<T>> tasks,
                long timeout, TimeUnit unit)
    throws InterruptedException, ExecutionException, TimeoutException;

测试submit

private static void method1(ExecutorService pool) throws InterruptedException, ExecutionException {
    Future future = pool.submit(() -> {
        log.debug("running");
        Thread.sleep(1000);
        return "ok";
    });

    log.debug("{}", future.get());
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
    ExecutorService pool = Executors.newFixedThreadPool(1);
    method1(pool);
}

测试结果

18:36:58.033 c.TestSubmit [pool-1-thread-1] - running
18:36:59.034 c.TestSubmit [main] - ok

测试invokeAll

private static void method2(ExecutorService pool) throws InterruptedException {
    List> futures = pool.invokeAll(Arrays.asList(
        () -> {
            log.debug("begin");
            Thread.sleep(1000);
            return "1";
        },
        () -> {
            log.debug("begin");
            Thread.sleep(500);
            return "2";
        },
        () -> {
            log.debug("begin");
            Thread.sleep(2000);
            return "3";
        }
    ));

    futures.forEach( f ->  {
        try {
            log.debug("{}", f.get());
        } catch (InterruptedException | ExecutionException e) {
            e.printStackTrace();
        }
    });
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
    ExecutorService pool = Executors.newFixedThreadPool(1);
    method2(pool);
}

测试结果

19:33:16.530 c.TestSubmit [pool-1-thread-1] - begin
19:33:17.530 c.TestSubmit [pool-1-thread-1] - begin
19:33:18.040 c.TestSubmit [pool-1-thread-1] - begin
19:33:20.051 c.TestSubmit [main] - 1
19:33:20.051 c.TestSubmit [main] - 2
19:33:20.051 c.TestSubmit [main] - 3

测试invokeAny

private static void method3(ExecutorService pool) throws InterruptedException, ExecutionException {
    String result = pool.invokeAny(Arrays.asList(
        () -> {
            log.debug("begin 1");
            Thread.sleep(1000);
            log.debug("end 1");
            return "1";
        },
        () -> {
            log.debug("begin 2");
            Thread.sleep(500);
            log.debug("end 2");
            return "2";
        },
        () -> {
            log.debug("begin 3");
            Thread.sleep(2000);
            log.debug("end 3");
            return "3";
        }
    ));
    log.debug("{}", result);
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
    ExecutorService pool = Executors.newFixedThreadPool(3);
    //ExecutorService pool = Executors.newFixedThreadPool(1);
    method3(pool);
}

测试结果

19:44:46.314 c.TestSubmit [pool-1-thread-1] - begin 1
19:44:46.314 c.TestSubmit [pool-1-thread-3] - begin 3
19:44:46.314 c.TestSubmit [pool-1-thread-2] - begin 2
19:44:46.817 c.TestSubmit [pool-1-thread-2] - end 2
19:44:46.817 c.TestSubmit [main] - 2

19:47:16.063 c.TestSubmit [pool-1-thread-1] - begin 1
19:47:17.063 c.TestSubmit [pool-1-thread-1] - end 1
19:47:17.063 c.TestSubmit [pool-1-thread-1] - begin 2
19:47:17.063 c.TestSubmit [main] - 1
08. 关闭线程池

shutdown

/*
线程池状态变为 SHUTDOWN
- 不会接收新任务
- 但已提交任务会执行完
- 此方法不会阻塞调用线程的执行
*/
void shutdown();
public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        // 修改线程池状态
        advanceRunState(SHUTDOWN);
        // 仅会打断空闲线程
        interruptIdleWorkers();
        onShutdown(); // 扩展点 ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    // 尝试终结(没有运行的线程可以立刻终结,如果还有运行的线程也不会等)
    tryTerminate();
}

shutdownNow

/*
线程池状态变为 STOP
- 不会接收新任务
- 会将队列中的任务返回
- 并用 interrupt 的方式中断正在执行的任务
*/
List shutdownNow();
public List shutdownNow() {
    List tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        // 修改线程池状态
        advanceRunState(STOP);
        // 打断所有线程
        interruptWorkers();
        // 获取队列中剩余任务
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    // 尝试终结
    tryTerminate();
    return tasks;
}

其他方法

// 不在 RUNNING 状态的线程池,此方法就返回 true
boolean isShutdown();
// 线程池状态是否是 TERMINATED
boolean isTerminated();
// 调用 shutdown 后,由于调用线程并不会等待所有任务运行结束,因此如果它想在线程池 TERMINATED 后做些事情,可以利用此方法等待
// 一般task是Callable类型的时候不用此方法,因为futureTask.get方法自带等待功能。
boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;

测试shutdown、shutdownNow、awaitTermination

@Slf4j(topic = "c.TestShutDown")
public class TestShutDown {

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        ExecutorService pool = Executors.newFixedThreadPool(2);

        Future result1 = pool.submit(() -> {
            log.debug("task 1 running...");
            Thread.sleep(1000);
            log.debug("task 1 finish...");
            return 1;
        });

        Future result2 = pool.submit(() -> {
            log.debug("task 2 running...");
            Thread.sleep(1000);
            log.debug("task 2 finish...");
            return 2;
        });

        Future result3 = pool.submit(() -> {
            log.debug("task 3 running...");
            Thread.sleep(1000);
            log.debug("task 3 finish...");
            return 3;
        });

        log.debug("shutdown");
        pool.shutdown();
        //        pool.awaitTermination(3, TimeUnit.SECONDS);
        //        List runnables = pool.shutdownNow();
        //        log.debug("other.... {}" , runnables);
    }
}

测试结果

#shutdown依旧会执行剩下的任务
20:09:13.285 c.TestShutDown [main] - shutdown
20:09:13.285 c.TestShutDown [pool-1-thread-1] - task 1 running...
20:09:13.285 c.TestShutDown [pool-1-thread-2] - task 2 running...
20:09:14.293 c.TestShutDown [pool-1-thread-2] - task 2 finish...
20:09:14.293 c.TestShutDown [pool-1-thread-1] - task 1 finish...
20:09:14.293 c.TestShutDown [pool-1-thread-2] - task 3 running...
20:09:15.303 c.TestShutDown [pool-1-thread-2] - task 3 finish...
#shutdownNow立刻停止所有任务
20:11:11.750 c.TestShutDown [main] - shutdown
20:11:11.750 c.TestShutDown [pool-1-thread-1] - task 1 running...
20:11:11.750 c.TestShutDown [pool-1-thread-2] - task 2 running...
20:11:11.750 c.TestShutDown [main] - other.... [java.util.concurrent.FutureTask@66d33a]
*09. 模式之 Worker Thread

定义

让有限的工作线程(Worker Thread)来轮流异步处理无限多的任务。也可以将其归类为分工模式,它的典型实现 就是线程池,也体现了经典设计模式中的享元模式。

例如,海底捞的服务员(线程),轮流处理每位客人的点餐(任务),如果为每位客人都配一名专属的服务员,那 么成本就太高了(对比另一种多线程设计模式:Thread-Per-Message)

注意,不同任务类型应该使用不同的线程池,这样能够避免饥饿,并能提升效率

例如,如果一个餐馆的工人既要招呼客人(任务类型A),又要到后厨做菜(任务类型B)显然效率不咋地,分成 服务员(线程池A)与厨师(线程池B)更为合理,当然你能想到更细致的分工

饥饿

固定大小线程池会有饥饿现象

  • 两个工人是同一个线程池中的两个线程

  • 他们要做的事情是:为客人点餐和到后厨做菜,这是两个阶段的工作

    • 客人点餐:必须先点完餐,等菜做好,上菜,在此期间处理点餐的工人必须等待
    • 后厨做菜:没啥说的,做就是了
  • 比如工人A 处理了点餐任务,接下来它要等着 工人B 把菜做好,然后上菜,他俩也配合的蛮好

  • 但现在同时来了两个客人,这个时候工人A 和工人B 都去处理点餐了,这时没人做饭了,饥饿

public class TestDeadLock {
    static final List<String> MENU = Arrays.asList("地三鲜", "宫保鸡丁", "辣子鸡丁", "烤鸡翅");
    static Random RANDOM = new Random();
    static String cooking() {
        return MENU.get(RANDOM.nextInt(MENU.size()));
    }
    public static void main(String[] args) {
        ExecutorService executorService = Executors.newFixedThreadPool(2);
        executorService.execute(() -> {
            log.debug("处理点餐...");
            Future<String> f = executorService.submit(() -> {
                log.debug("做菜");
                return cooking();
            });
            try {
                log.debug("上菜: {}", f.get());
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        });
        /*
        executorService.execute(() -> {
            log.debug("处理点餐...");
            Future f = executorService.submit(() -> {
                log.debug("做菜");
                return cooking();
            });
            try {
                log.debug("上菜: {}", f.get());
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        });
        */
    }
}

输出

17:21:27.883 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
17:21:27.891 c.TestDeadLock [pool-1-thread-2] - 做菜
17:21:27.891 c.TestDeadLock [pool-1-thread-1] - 上菜: 烤鸡翅

当注释取消后,可能的输出

17:08:41.339 c.TestDeadLock [pool-1-thread-2] - 处理点餐...  
17:08:41.339 c.TestDeadLock [pool-1-thread-1] - 处理点餐... 

解决方法可以增加线程池的大小,不过不是根本解决方案,还是前面提到的,不同的任务类型,采用不同的线程 池,例如:

public class TestDeadLock {
    static final List<String> MENU = Arrays.asList("地三鲜", "宫保鸡丁", "辣子鸡丁", "烤鸡翅");
    static Random RANDOM = new Random();
    static String cooking() {
        return MENU.get(RANDOM.nextInt(MENU.size()));
    }
    public static void main(String[] args) {
        ExecutorService waiterPool = Executors.newFixedThreadPool(1);
        ExecutorService cookPool = Executors.newFixedThreadPool(1);
        waiterPool.execute(() -> {
            log.debug("处理点餐...");
            Future<String> f = cookPool.submit(() -> {
                log.debug("做菜");
                return cooking();
            });
            try {
                log.debug("上菜: {}", f.get());
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        });
        waiterPool.execute(() -> {
            log.debug("处理点餐...");
            Future<String> f = cookPool.submit(() -> {
                log.debug("做菜");
                return cooking();
            });
            try {
                log.debug("上菜: {}", f.get());
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        });
    }
}

输出

17:25:14.626 c.TestDeadLock [pool-1-thread-1] - 处理点餐... 
17:25:14.630 c.TestDeadLock [pool-2-thread-1] - 做菜
17:25:14.631 c.TestDeadLock [pool-1-thread-1] - 上菜: 地三鲜
17:25:14.632 c.TestDeadLock [pool-1-thread-1] - 处理点餐... 
17:25:14.632 c.TestDeadLock [pool-2-thread-1] - 做菜
17:25:14.632 c.TestDeadLock [pool-1-thread-1] - 上菜: 辣子鸡丁

创建多少线程池合适

  • 过小会导致程序不能充分地利用系统资源、容易导致饥饿
  • 过大会导致更多的线程上下文切换,占用更多内存

CPU 密集型运算

通常采用 cpu 核数 + 1 能够实现最优的 CPU 利用率,+1 是保证当线程由于页缺失故障(操作系统)或其它原因 导致暂停时,额外的这个线程就能顶上去,保证 CPU 时钟周期不被浪费

I/O 密集型运算

CPU 不总是处于繁忙状态,例如,当你执行业务计算时,这时候会使用 CPU 资源,但当你执行 I/O 操作时、远程 RPC 调用时,包括进行数据库操作时,这时候 CPU 就闲下来了,你可以利用多线程提高它的利用率。

经验公式如下

线程数 = 核数 * 期望 CPU 利用率 * 总时间(CPU计算时间+等待时间) / CPU 计算时间

例如 4 核 CPU 计算时间是 50% ,其它等待时间是 50%,期望 cpu 被 100% 利用,套用公式

4 * 100% * 100% / 50% = 8

例如 4 核 CPU 计算时间是 10% ,其它等待时间是 90%,期望 cpu 被 100% 利用,套用公式

4 * 100% * 100% / 10% = 40

10. 任务调度线程池

在『任务调度线程池』功能加入之前(JDK1.3),可以使用 java.util.Timer 来实现定时功能,Timer 的优点在于简单易用,但 由于所有任务都是由同一个线程来调度,因此所有任务都是串行执行的,同一时间只能有一个任务在执行,前一个 任务的延迟或异常都将会影响到之后的任务。

public static void main(String[] args) {
    Timer timer = new Timer();
    TimerTask task1 = new TimerTask() {
        @Override
        public void run() {
            log.debug("task 1");
            sleep(2);
        }
    };
    TimerTask task2 = new TimerTask() {
        @Override
        public void run() {
            log.debug("task 2");
        }
    };
    // 使用 timer 添加两个任务,希望它们都在 1s 后执行
    // 但由于 timer 内只有一个线程来顺序执行队列中的任务,因此『任务1』的延时,影响了『任务2』的执行
    timer.schedule(task1, 1000);
    timer.schedule(task2, 1000);
}

输出

20:46:09.444 c.TestTimer [main] - start... 
20:46:10.447 c.TestTimer [Timer-0] - task 1 
20:46:12.448 c.TestTimer [Timer-0] - task 2 

使用 ScheduledExecutorService 改写:

ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
// 添加两个任务,希望它们都在 1s 后执行
executor.schedule(() -> {
    System.out.println("任务1,执行时间:" + new Date());
    try { Thread.sleep(2000); } catch (InterruptedException e) { }
}, 1000, TimeUnit.MILLISECONDS);

executor.schedule(() -> {
    System.out.println("任务2,执行时间:" + new Date());
}, 1000, TimeUnit.MILLISECONDS);

输出

任务1,执行时间:Thu Jan 03 12:45:17 CST 2019 
任务2,执行时间:Thu Jan 03 12:45:17 CST 2019 

scheduleAtFixedRate 例子:

ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleAtFixedRate(() -> {
    log.debug("running...");
}, 1, 1, TimeUnit.SECONDS);

输出

21:45:43.167 c.TestTimer [main] - start... 
21:45:44.215 c.TestTimer [pool-1-thread-1] - running... 
21:45:45.215 c.TestTimer [pool-1-thread-1] - running... 
21:45:46.215 c.TestTimer [pool-1-thread-1] - running... 
21:45:47.215 c.TestTimer [pool-1-thread-1] - running... 

scheduleAtFixedRate 例子(任务执行时间超过了间隔时间):

ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleAtFixedRate(() -> {
    log.debug("running...");
    sleep(2);
}, 1, 1, TimeUnit.SECONDS);

输出分析:一开始,延时 1s,接下来,由于任务执行时间 > 间隔时间,间隔被『撑』到了 2s

21:44:30.311 c.TestTimer [main] - start... 
21:44:31.360 c.TestTimer [pool-1-thread-1] - running... 
21:44:33.361 c.TestTimer [pool-1-thread-1] - running... 
21:44:35.362 c.TestTimer [pool-1-thread-1] - running... 
21:44:37.362 c.TestTimer [pool-1-thread-1] - running...

scheduleWithFixedDelay 例子:

ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleWithFixedDelay(()-> {
    log.debug("running...");
    sleep(2);
}, 1, 1, TimeUnit.SECONDS);

输出分析:一开始,延时 1s,scheduleWithFixedDelay 的间隔是 上一个任务结束 <-> 延时 <-> 下一个任务开始 所 以间隔都是 3s

21:40:55.078 c.TestTimer [main] - start... 
21:40:56.140 c.TestTimer [pool-1-thread-1] - running... 
21:40:59.143 c.TestTimer [pool-1-thread-1] - running... 
21:41:02.145 c.TestTimer [pool-1-thread-1] - running... 
21:41:05.147 c.TestTimer [pool-1-thread-1] - running... 

评价 整个线程池表现为:线程数固定,任务数多于线程数时,会放入无界队列排队。任务执行完毕,这些线 程也不会被释放。用来执行延迟或反复执行的任务

11. 正确处理执行任务异常

不论是哪个线程池,在线程执行的任务发生异常后既不会抛出,也不会捕获,这时就需要我们做一定的处理。

方法1:主动捉异常

ExecutorService pool = Executors.newFixedThreadPool(1);
pool.submit(() -> {
    try {
        log.debug("task1");
        int i = 1 / 0;
    } catch (Exception e) {
        log.error("error:", e);
    }
});

输出

21:59:04.558 c.TestTimer [pool-1-thread-1] - task1 
21:59:04.562 c.TestTimer [pool-1-thread-1] - error: 
java.lang.ArithmeticException: / by zero 
 at cn.itcast.n8.TestTimer.lambda$main$0(TestTimer.java:28) 
 at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) 
 at java.util.concurrent.FutureTask.run(FutureTask.java:266) 
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) 
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) 
 at java.lang.Thread.run(Thread.java:748) 

方法2:使用 Future

说明:

  • lambda表达式内要有返回值,编译器才能将其识别为Callable,否则将识别为Runnable,也就不能用FutureTask
  • 方法中如果出异常,futuretask.get会返回这个异常,否者正常返回。
ExecutorService pool = Executors.newFixedThreadPool(1);
Future<Boolean> f = pool.submit(() -> {
    log.debug("task1");
    int i = 1 / 0;
    return true;
});
log.debug("result:{}", f.get());

输出

21:54:58.208 c.TestTimer [pool-1-thread-1] - task1 
Exception in thread "main" java.util.concurrent.ExecutionException: 
java.lang.ArithmeticException: / by zero 
 at java.util.concurrent.FutureTask.report(FutureTask.java:122) 
 at java.util.concurrent.FutureTask.get(FutureTask.java:192) 
 at cn.itcast.n8.TestTimer.main(TestTimer.java:31) 
Caused by: java.lang.ArithmeticException: / by zero 
 at cn.itcast.n8.TestTimer.lambda$main$0(TestTimer.java:28) 
 at java.util.concurrent.FutureTask.run(FutureTask.java:266) 
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) 
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) 
 at java.lang.Thread.run(Thread.java:748) 
*12. 应用之定时任务

如何让每周四 18:00:00 定时执行任务?

// 获得当前时间
LocalDateTime now = LocalDateTime.now();
// 获取本周四 18:00:00.000
LocalDateTime thursday = 
    now.with(DayOfWeek.THURSDAY).withHour(18).withMinute(0).withSecond(0).withNano(0);
// 如果当前时间已经超过 本周四 18:00:00.000, 那么找下周四 18:00:00.000
if(now.compareTo(thursday) >= 0) {
    thursday = thursday.plusWeeks(1);
}
// 计算时间差,即延时执行时间
long initialDelay = Duration.between(now, thursday).toMillis();
// 计算间隔时间,即 1 周的毫秒值
long oneWeek = 7 * 24 * 3600 * 1000;
ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
System.out.println("开始时间:" + new Date());
executor.scheduleAtFixedRate(() -> {
    System.out.println("执行时间:" + new Date());
}, initialDelay, oneWeek, TimeUnit.MILLISECONDS);
13. Tomcat 线程池

Tomcat 在哪里用到了线程池呢

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第5张图片

  • LimitLatch 用来限流,可以控制最大连接个数,类似 J.U.C 中的 Semaphore 后面再讲
  • Acceptor 只负责【接收新的 socket 连接】
  • Poller 只负责监听 socket channel 是否有【可读的 I/O 事件】
  • 一旦可读,封装一个任务对象(socketProcessor),提交给 Executor 线程池处理
  • Executor 线程池中的工作线程最终负责【处理请求】

Tomcat 线程池扩展了 ThreadPoolExecutor,行为稍有不同

  • 如果总线程数达到 maximumPoolSize

    • 这时不会立刻抛 RejectedExecutionException 异常
    • 而是再次尝试将任务放入队列,如果还失败,才抛出 RejectedExecutionException 异常

源码 tomcat-7.0.42

public void execute(Runnable command, long timeout, TimeUnit unit) {
    submittedCount.incrementAndGet();
    try {
        super.execute(command);
    } catch (RejectedExecutionException rx) {
        if (super.getQueue() instanceof TaskQueue) {
            final TaskQueue queue = (TaskQueue)super.getQueue();
            try {
                if (!queue.force(command, timeout, unit)) {
                    submittedCount.decrementAndGet();
                    throw new RejectedExecutionException("Queue capacity is full.");
                }
            } catch (InterruptedException x) {
                submittedCount.decrementAndGet();
                Thread.interrupted();
                throw new RejectedExecutionException(x);
            }
        } else {
            submittedCount.decrementAndGet();
            throw rx;
        }
    }
}

TaskQueue.java

public boolean force(Runnable o, long timeout, TimeUnit unit) throws InterruptedException {
    if ( parent.isShutdown() ) 
        throw new RejectedExecutionException(
        "Executor not running, can't force a command into the queue"
    );
    return super.offer(o,timeout,unit); //forces the item onto the queue, to be used if the task 
    is rejected
}

Connector 配置

配置项 默认值 说明
acceptorThreadCount 1 acceptor 线程数量
pollerThreadCount 1 poller 线程数量
minSpareThreads 10 核心线程数,即 corePoolSize
maxThreads 200 最大线程数,即 maximumPoolSize
executor - Executor 名称,用来引用下面的 Executor

Executor 线程配置

配置项 默认值 说明
threadPriority 5 线程优先级
deamon true 是否守护线程
minSpareThreads 25 核心线程数,即corePoolSize
maxThreads 200 最大线程数,即 maximumPoolSize
maxIdleTime 60000 线程生存时间,单位是毫秒,默认值即 1 分钟
maxQueueSize Integer.MAX_VALUE 队列长度
prestartminSpareThreads false 核心线程是否在服务器启动时启动

3、Fork/Join

01. 概念

Fork/Join 是 JDK 1.7 加入的新的线程池实现,它体现的是一种分治思想,适用于能够进行任务拆分的 cpu 密集型 运算

所谓的任务拆分,是将一个大任务拆分为算法上相同的小任务,直至不能拆分可以直接求解。跟递归相关的一些计 算,如归并排序、斐波那契数列、都可以用分治思想进行求解

Fork/Join 在分治的基础上加入了多线程,可以把每个任务的分解和合并交给不同的线程来完成,进一步提升了运 算效率

Fork/Join 默认会创建与 cpu 核心数大小相同的线程池

02. 应用之求和

提交给 Fork/Join 线程池的任务需要继承 RecursiveTask(有返回值)或 RecursiveAction(没有返回值),例如下 面定义了一个对 1~n 之间的整数求和的任务

@Slf4j(topic = "c.AddTask")
class AddTask1 extends RecursiveTask {
    int n;
    public AddTask1(int n) {
        this.n = n;
    }
    @Override
    public String toString() {
        return "{" + n + '}';
    }
    @Override
    protected Integer compute() {
        // 如果 n 已经为 1,可以求得结果了
        if (n == 1) {
            log.debug("join() {}", n);
            return n;
        }

        // 将任务进行拆分(fork)
        AddTask1 t1 = new AddTask1(n - 1);
        t1.fork();
        log.debug("fork() {} + {}", n, t1);

        // 合并(join)结果
        int result = n + t1.join();
        log.debug("join() {} + {} = {}", n, t1, result);
        return result;
    }
}

然后提交给 ForkJoinPool 来执行

public static void main(String[] args) {
    ForkJoinPool pool = new ForkJoinPool(4);
    System.out.println(pool.invoke(new AddTask1(5)));
}

结果

[ForkJoinPool-1-worker-0] - fork() 2 + {1} 
[ForkJoinPool-1-worker-1] - fork() 5 + {4} 
[ForkJoinPool-1-worker-0] - join() 1 
[ForkJoinPool-1-worker-0] - join() 2 + {1} = 3 
[ForkJoinPool-1-worker-2] - fork() 4 + {3} 
[ForkJoinPool-1-worker-3] - fork() 3 + {2} 
[ForkJoinPool-1-worker-3] - join() 3 + {2} = 6 
[ForkJoinPool-1-worker-2] - join() 4 + {3} = 10 
[ForkJoinPool-1-worker-1] - join() 5 + {4} = 15 
15 

用图来表示

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第6张图片

改进

class AddTask3 extends RecursiveTask {

    int begin;
    int end;
    public AddTask3(int begin, int end) {
        this.begin = begin;
        this.end = end;
    }
    @Override
    public String toString() {
        return "{" + begin + "," + end + '}';
    }
    @Override
    protected Integer compute() {
        // 5, 5
        if (begin == end) {
            log.debug("join() {}", begin);
            return begin;
        }
        // 4, 5
        if (end - begin == 1) {
            log.debug("join() {} + {} = {}", begin, end, end + begin);
            return end + begin;
        }

        // 1 5
        int mid = (end + begin) / 2; // 3
        AddTask3 t1 = new AddTask3(begin, mid); // 1,3
        t1.fork();
        AddTask3 t2 = new AddTask3(mid + 1, end); // 4,5
        t2.fork();
        log.debug("fork() {} + {} = ?", t1, t2);
        int result = t1.join() + t2.join();
        log.debug("join() {} + {} = {}", t1, t2, result);
        return result;
    }
}

然后提交给 ForkJoinPool 来执行

public static void main(String[] args) {
    ForkJoinPool pool = new ForkJoinPool(4);
    System.out.println(pool.invoke(new AddTask3(1, 10)));
}

结果

[ForkJoinPool-1-worker-0] - join() 1 + 2 = 3 
[ForkJoinPool-1-worker-3] - join() 4 + 5 = 9 
[ForkJoinPool-1-worker-0] - join() 3 
[ForkJoinPool-1-worker-1] - fork() {1,3} + {4,5} = ? 
[ForkJoinPool-1-worker-2] - fork() {1,2} + {3,3} = ? 
[ForkJoinPool-1-worker-2] - join() {1,2} + {3,3} = 6 
[ForkJoinPool-1-worker-1] - join() {1,3} + {4,5} = 15 
15 

用图来表示

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第7张图片

*②:AQS 原理

1、概述

全称是 AbstractQueuedSynchronizer,是阻塞式锁和相关的同步器工具的框架

特点:

  • 用 state 属性来表示资源的状态(分独占模式和共享模式),子类需要定义如何维护这个状态,控制如何获取锁和释放锁

    • getState - 获取 state 状态
    • setState - 设置 state 状态
    • compareAndSetState - cas 机制设置 state 状态
    • 独占模式是只有一个线程能够访问资源,而共享模式可以允许多个线程访问资源
  • 提供了基于 FIFO 的等待队列,类似于 Monitor 的 EntryList

  • 条件变量来实现等待、唤醒机制,支持多个条件变量,类似于 Monitor 的 WaitSet

子类主要实现这样一些方法(默认抛出 UnsupportedOperationException)

  • tryAcquire
  • tryRelease
  • tryAcquireShared
  • tryReleaseShared
  • isHeldExclusively

获取锁的姿势

// 如果获取锁失败
if (!tryAcquire(arg)) {
    // 入队, 可以选择阻塞当前线程 park unpark
}

释放锁的姿势

// 如果释放锁成功
if (tryRelease(arg)) {
    // 让阻塞线程恢复运行
}

2、实现不可重入锁

01. 自定义同步器
final class MySync extends AbstractQueuedSynchronizer {
    @Override
    protected boolean tryAcquire(int acquires) {
        if (acquires == 1){
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
        }
        return false;
    }
    @Override
    protected boolean tryRelease(int acquires) {
        if(acquires == 1) {
            if(getState() == 0) {
                throw new IllegalMonitorStateException();
            }
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }
        return false;
    }
    protected Condition newCondition() {
        return new ConditionObject();
    }
    @Override
    protected boolean isHeldExclusively() {
        return getState() == 1;
    }
}
02. 自定义锁

有了自定义同步器,很容易复用 AQS ,实现一个功能完备的自定义锁

class MyLock implements Lock {
    static MySync sync = new MySync();
    @Override
    // 尝试,不成功,进入等待队列
    public void lock() {
        sync.acquire(1);
    }
    @Override
    // 尝试,不成功,进入等待队列,可打断
    public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }
    @Override
    // 尝试一次,不成功返回,不进入队列
    public boolean tryLock() {
        return sync.tryAcquire(1);
    }
    @Override
    // 尝试,不成功,进入等待队列,有时限
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(time));
    }
    @Override
    // 释放锁
    public void unlock() {
        sync.release(1);
    }
    @Override
    // 生成条件变量
    public Condition newCondition() {
        return sync.newCondition();
    }
}

测试一下

MyLock lock = new MyLock();
new Thread(() -> {
    lock.lock();
    try {
        log.debug("locking...");
        sleep(1);
    } finally {
        log.debug("unlocking...");
        lock.unlock();
    }
},"t1").start();
new Thread(() -> {
    lock.lock();
    try {
        log.debug("locking...");
    } finally {
        log.debug("unlocking...");
        lock.unlock();
    }
},"t2").start();

输出

22:29:28.727 c.TestAqs [t1] - locking... 
22:29:29.732 c.TestAqs [t1] - unlocking... 
22:29:29.732 c.TestAqs [t2] - locking... 
22:29:29.732 c.TestAqs [t2] - unlocking... 

不可重入测试

如果改为下面代码,会发现自己也会被挡住(只会打印一次 locking)

lock.lock();
log.debug("locking...");
lock.lock();
log.debug("locking...");

3、心得

01. 起源

早期程序员会自己通过一种同步器去实现另一种相近的同步器,例如用可重入锁去实现信号量,或反之。这显然不 够优雅,于是在 JSR166(java 规范提案)中创建了 AQS,提供了这种通用的同步器机制。

02. 目标

AQS 要实现的功能目标

  • 阻塞版本获取锁 acquire 和非阻塞的版本尝试获取锁 tryAcquire
  • 获取锁超时机制
  • 通过打断取消机制
  • 独占机制及共享机制
  • 条件不满足时的等待机制

要实现的性能目标

Instead, the primary performance goal here is scalability: to predictably maintain efficiency even, or especially, when synchronizers are contended.

03. 设计

AQS 的基本思想其实很简单

获取锁的逻辑

while(state 状态不允许获取) {
    if(队列中还没有此线程) {
        入队并阻塞
    }
}
当前线程出队

释放锁的逻辑

if(state 状态允许了) {
    恢复阻塞的线程(s)
}

要点

  • 原子维护 state 状态
  • 阻塞及恢复线程
  • 维护队列
  1. state 设计

    • state 使用 volatile 配合 cas 保证其修改时的原子性
    • state 使用了 32bit int 来维护同步状态,因为当时使用 long 在很多平台下测试的结果并不理想
  1. 阻塞恢复设计

    • 早期的控制线程暂停和恢复的 api 有 suspend 和 resume,但它们是不可用的,因为如果先调用的 resume 那么 suspend 将感知不到
    • 解决方法是使用 park & unpark 来实现线程的暂停和恢复,具体原理在之前讲过了,先 unpark 再 park 也没 问题
    • park & unpark 是针对线程的,而不是针对同步器的,因此控制粒度更为精细
    • park 线程还可以通过 interrupt 打断
  2. 队列设计

    • 使用了 FIFO 先入先出队列,并不支持优先级队列
    • 设计时借鉴了 CLH 队列,它是一种单向无锁队列

队列中有 head 和 tail 两个指针节点,都用 volatile 修饰配合 cas 使用,每个节点有 state 维护节点状态 入队伪代码,只需要考虑 tail 赋值的原子性

do {
    // 原来的 tail
    Node prev = tail;
    // 用 cas 在原来 tail 的基础上改为 node
} while(tail.compareAndSet(prev, node))

出队伪代码

// prev 是上一个节点
while((Node prev=node.prev).state != 唤醒状态) {
}
// 设置头节点
head = node;

CLH 好处:

  • 无锁,使用自旋
  • 快速,无阻塞

AQS 在一些方面改进了 CLH

private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        // 队列中还没有元素 tail 为 null
        if (t == null) {
            // 将 head 从 null -> dummy
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            // 将 node 的 prev 设置为原来的 tail
            node.prev = t;
            // 将 tail 从原来的 tail 设置为 node
            if (compareAndSetTail(t, node)) {
                // 原来 tail 的 next 设置为 node
                t.next = node;
                return t;
            }
        }
    }
}
04. 主要用到 AQS 的并发工具类

③:ReentrantLock 原理

1、非公平锁实现原理

01. 加锁解锁流程

先从构造器开始看,默认为非公平锁实现

public ReentrantLock() {
    sync = new NonfairSync();
}

NonfairSync 继承自 AQS 没有竞争时

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第8张图片

第一个竞争出现时

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第9张图片

Thread-1 执行了

  1. CAS 尝试将 state 由 0 改为 1,结果失败

  2. 进入 tryAcquire 逻辑,这时 state 已经是1,结果仍然失败

  3. 接下来进入 addWaiter 逻辑,构造 Node 队列

    • 图中黄色三角表示该 Node 的 waitStatus 状态,其中 0 为默认正常状态
    • Node 的创建是懒惰的
    • 其中第一个 Node 称为 Dummy(哑元)或哨兵,用来占位,并不关联线程

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第10张图片

当前线程进入 acquireQueued 逻辑

  1. acquireQueued 会在一个死循环中不断尝试获得锁,失败后进入 park 阻塞
  2. 如果自己是紧邻着 head(排第二位),那么再次 tryAcquire 尝试获取锁,当然这时 state 仍为 1,失败
  3. 进入 shouldParkAfterFailedAcquire 逻辑,将前驱 node,即 head 的 waitStatus 改为 -1,这次返回 false
    JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第11张图片
  4. shouldParkAfterFailedAcquire 执行完毕回到 acquireQueued ,再次 tryAcquire 尝试获取锁,当然这时 state 仍为 1,失败
  5. 当再次进入 shouldParkAfterFailedAcquire 时,这时因为其前驱 node 的 waitStatus 已经是 -1,这次返回 true
  6. 进入 parkAndCheckInterrupt, Thread-1 park(灰色表示)

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第12张图片

再次有多个线程经历上述过程竞争失败,变成这个样子

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第13张图片

Thread-0 释放锁,进入 tryRelease 流程,如果成功

  • 设置 exclusiveOwnerThread 为 null
  • state = 0

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第14张图片

当前队列不为 null,并且 head 的 waitStatus = -1,进入 unparkSuccessor 流程

找到队列中离 head 最近的一个 Node(没取消的),unpark 恢复其运行,本例中即为 Thread-1

回到 Thread-1 的 acquireQueued 流程

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第15张图片

如果加锁成功(没有竞争),会设置

  • exclusiveOwnerThread 为 Thread-1,state = 1
  • head 指向刚刚 Thread-1 所在的 Node,该 Node 清空 Thread
  • 原本的 head 因为从链表断开,而可被垃圾回收

如果这时候有其它线程来竞争(非公平的体现),例如这时有 Thread-4 来了

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第16张图片

如果不巧又被 Thread-4 占了先

  • Thread-4 被设置为 exclusiveOwnerThread,state = 1
  • Thread-1 再次进入 acquireQueued 流程,获取锁失败,重新进入 park 阻塞
02. 加锁源码
// Sync 继承自 AQS
static final class NonfairSync extends Sync {
    private static final long serialVersionUID = 7316153563782823691L;

    // 加锁实现
    final void lock() {
        // 首先用 cas 尝试(仅尝试一次)将 state 从 0 改为 1, 如果成功表示获得了独占锁
        if (compareAndSetState(0, 1))
            setExclusiveOwnerThread(Thread.currentThread());
        else
            // 如果尝试失败,进入 ㈠
            acquire(1);
    }

    // ㈠ AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquire(int arg) {
        // ㈡ tryAcquire 
        if (
            !tryAcquire(arg) &&
            // 当 tryAcquire 返回为 false 时, 先调用 addWaiter ㈣, 接着 acquireQueued ㈤
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            selfInterrupt();
        }
    }

    // ㈡ 进入 ㈢
    protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }

    // ㈢ Sync 继承过来的方法, 方便阅读, 放在此处
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        // 如果还没有获得锁
        if (c == 0) {
            // 尝试用 cas 获得, 这里体现了非公平性: 不去检查 AQS 队列
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入
        else if (current == getExclusiveOwnerThread()) {
            // state++
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        // 获取失败, 回到调用处
        return false;
    }

    // ㈣ AQS 继承过来的方法, 方便阅读, 放在此处
    //将当前node加入等待队列末尾等待,并返回当前node
    private Node addWaiter(Node mode) {
        // 将当前线程关联到一个 Node 对象上, 模式为独占模式
        Node node = new Node(Thread.currentThread(), mode);
        //非公平同步器中有head和tail两个引用分别指向了等待队列的第一个和最后一个节点
        //pred指的是node的前驱,从队尾插入,所以pred为tail
        Node pred = tail;
        // 如果 tail 不为 null, 说明已经有了等待队列了,cas 尝试将 Node 对象加入 AQS 队列尾部
        if (pred != null) {
            //将node的前驱节点设置为pred
            node.prev = pred;
            //尝试将队列的tial从当前的pred修改为node
            if (compareAndSetTail(pred, node)) {
                // 双向链表
                pred.next = node;
                return node;
            }
        }
        //如果pred为null,说明等待队列还未创建,调用enq方法创建队列
        // 尝试将 Node 加入 AQS, 进入 ㈥
        enq(node);
        return node;
    }

    // ㈥ AQS 继承过来的方法, 方便阅读, 放在此处
    //该方法就是创建等待队列,并将node插入队列的尾部。
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) {
                // 还没有, 设置 head 为哨兵节点(不对应线程,状态为 0)
                if (compareAndSetHead(new Node())) {
                    //将head赋值给tail,head和tail同时指向哨兵节点
                    tail = head;
                }
            } else {
                // cas 尝试将 Node 对象加入 AQS 队列尾部
                //设置node的前驱节点为队列的最后一个节点
                node.prev = t;
                //尝试将队列的尾部从当前的tail设置为node
                if (compareAndSetTail(t, node)) {
                    //将node设为上一个tail的后继节点
                    t.next = node;
                    return t;
                }
            }
        }
    }

    // ㈤ AQS 继承过来的方法, 方便阅读, 放在此处
    //在队列中循环等待,只有当排队排到第一名并且获得了锁才能出队并从方法中退出。
    //返回打断状态
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                //找到当前node的前驱节点
                final Node p = node.predecessor();
                // 上一个节点是 head, 表示轮到自己(当前线程对应的 node)了, 尝试获取
                if (p == head && tryAcquire(arg)) {
                    // 获取成功, 设置自己(当前线程对应的 node)为 head
                    setHead(node);
                    // 上一个节点 help GC
                    p.next = null;
                    failed = false;
                    // 返回中断标记 false
                    return interrupted;
                }
                if (
                    // 判断是否应当 park, 进入 ㈦
                    shouldParkAfterFailedAcquire(p, node) &&
                    // park 等待, 此时 Node 的状态被置为 Node.SIGNAL ㈧
                    parkAndCheckInterrupt()
                ) {
                    interrupted = true;
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    // ㈦ AQS 继承过来的方法, 方便阅读, 放在此处
    //判断acquire失败以后是否应该阻塞等待。从规则上来讲:
    //1.如果前驱节点都阻塞了,那么当前节点也应该阻塞
    //2.如果前驱节点取消,那么应该将前驱节点前移,直到其状态不为取消为止。
    //3.如果前两种情况都不是,尝试将前驱节点状态设为SIGNAL,返回false(不用阻塞,等到下次在阻塞)
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        // 获取上一个节点的状态
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL) {
            // 上一个节点都在阻塞, 那么自己也阻塞好了
            return true;
        }
        // > 0 表示取消状态
        if (ws > 0) {
            // 上一个节点取消, 那么重构删除前面所有取消的节点, 返回到外层循环重试
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            // 这次还没有阻塞
            // 但下次如果重试不成功, 则需要阻塞,这时需要设置上一个节点状态为 Node.SIGNAL
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

    // ㈧ 阻塞当前线程
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }
}

注意

是否需要 unpark 是由当前节点的前驱节点的 waitStatus == Node.SIGNAL 来决定,而不是本节点的 waitStatus 决定

总结:

  • 调用lock,尝试将state从0修改为1

    • 成功:将owner设为当前线程

    • 失败:调用acquire->tryAcquire->nonfairTryAcquire,判断state=0则获得锁,或者state不为0但当前线程持有锁则重入锁,以上两种情况tryAcquire返回true,剩余情况返回false。

      • true:获得锁

      • false:调用acquireQueued(addWaiter(Node.EXCLUSIVE), arg),其中addwiter将关联线程的节点插入AQS队列尾部,进入acquireQueued中的for循环:

        • 如果当前节点是头节点,并尝试获得锁成功,将当前节点设为头节点,清除此节点信息,返回打断标记。
        • 调用shoudParkAfterFailure,第一次调用返回false,并将前驱节点改为-1,第二次循环如果再进入此方法,会进入阻塞并检查打断的方法。
03. 解锁源码
// Sync 继承自 AQS
static final class NonfairSync extends Sync {
    // 解锁实现
    public void unlock() {
        sync.release(1);
    }

    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final boolean release(int arg) {
        // 尝试释放锁, 进入 ㈠
        if (tryRelease(arg)) {
            // 队列头节点 unpark
            Node h = head; 
            if (
                // 队列不为 null
                h != null &&
                // waitStatus == Node.SIGNAL 才需要 unpark
                h.waitStatus != 0
            ) {
                // unpark AQS 中等待的线程, 进入 ㈡
                unparkSuccessor(h);
            }
            return true;
        }
        return false;
    }

    // ㈠ Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryRelease(int releases) {
        // state--
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        // 支持锁重入, 只有 state 减为 0, 才释放成功
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        setState(c);
        return free;
    }

    // ㈡ AQS 继承过来的方法, 方便阅读, 放在此处
    private void unparkSuccessor(Node node) {
        // 如果状态为 Node.SIGNAL 尝试重置状态为 0
        // 不成功也可以
        int ws = node.waitStatus;
        if (ws < 0) {
            compareAndSetWaitStatus(node, ws, 0);
        }
        // 找到需要 unpark 的节点, 但本节点从 AQS 队列中脱离, 是由唤醒节点完成的
        Node s = node.next;
        // 不考虑已取消的节点, 从 AQS 队列从后至前找到队列最前面需要 unpark 的节点
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }
}

总结:

  • unlock->syn.release(1)->tryRelease(1),如果当前线程并不持有锁,抛异常。state减去1,如果之后state为0,解锁成功,返回true;如果仍大于0,表示解锁不完全,当前线程依旧持有锁,返回false。

  • 返回true:检查AQS队列第一个节点状态图是否为SIGNAL(意味着有责任唤醒其后记节点),如果有,调用unparkSuccessor

    • unparkSuccessor中,不考虑已取消的节点, 从 AQS 队列从后至前找到队列最前面需要 unpark 的节点,如果有,将其唤醒。
  • 返回false:

2、可重入原理

当持有锁的线程再次尝试获取锁时,会将state的值加1,state表示锁的重入量。

static final class NonfairSync extends Sync {
    // ...

    // Sync 继承过来的方法, 方便阅读, 放在此处
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入
        else if (current == getExclusiveOwnerThread()) {
            // state++
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }

    // Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryRelease(int releases) {
        // state-- 
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        // 支持锁重入, 只有 state 减为 0, 才释放成功
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        setState(c);
        return free;
    }
}

3、可打断原理

不可打断模式

在此模式下,即使它被打断,仍会驻留在 AQS 队列中,并将打断信号存储在一个interrupt变量中。一直要等到获得锁后方能得知自己被打断了,并且调用selfInterrupt方法打断自己。

// Sync 继承自 AQS
static final class NonfairSync extends Sync {
    // ...

    private final boolean parkAndCheckInterrupt() {
        // 如果打断标记已经是 true, 则 park 会失效
        LockSupport.park(this);
        // interrupted 会清除打断标记
        return Thread.interrupted();
    }

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null;
                    failed = false;
                    // 还是需要获得锁后, 才能返回打断状态
                    return interrupted;
                }
                if (
                    shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt()
                ) {
                    // 如果是因为 interrupt 被唤醒, 返回打断状态为 true
                    interrupted = true;
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    public final void acquire(int arg) {
        if (
            !tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            // 如果打断状态为 true
            selfInterrupt();
        }
    }
	
    //响应打断标记,打断自己
    static void selfInterrupt() {
        // 重新产生一次中断
        Thread.currentThread().interrupt();
    }
}

可打断模式

此模式下即使线程在等待队列中等待,一旦被打断,就会立刻抛出打断异常。

static final class NonfairSync extends Sync {
    public final void acquireInterruptibly(int arg) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        // 如果没有获得到锁, 进入 ㈠
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }

    // ㈠ 可打断的获取锁流程
    private void doAcquireInterruptibly(int arg) throws InterruptedException {
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt()) {
                    // 在 park 过程中如果被 interrupt 会进入此
                    // 这时候抛出异常, 而不会再次进入 for (;;)
                    throw new InterruptedException();
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
}

4、公平锁实现原理

简而言之,公平与非公平的区别在于,公平锁中的tryAcquire方法被重写了,新来的线程即便得知了锁的state为0,也要先判断等待队列中是否还有线程等待,只有当队列没有线程等待式,才获得锁。

static final class FairSync extends Sync {
    private static final long serialVersionUID = -3000897897090466540L;
    final void lock() {
        acquire(1);
    }

    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquire(int arg) {
        if (
            !tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            selfInterrupt();
        }
    }
    // 与非公平锁主要区别在于 tryAcquire 方法的实现
    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            // 先检查 AQS 队列中是否有前驱节点, 没有才去竞争
            if (!hasQueuedPredecessors() &&
                compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }

    // ㈠ AQS 继承过来的方法, 方便阅读, 放在此处
    //存疑
    public final boolean hasQueuedPredecessors() {
        Node t = tail;
        Node h = head;
        Node s;
        // h != t 时表示队列中有 Node
        return h != t &&
            (
            // (s = h.next) == null 表示队列中还有没有老二
            (s = h.next) == null ||
            // 或者队列中老二线程不是此线程
            s.thread != Thread.currentThread()
        );
    }
}

5、条件变量实现原理

每个条件变量其实就对应着一个等待队列,其实现类是 ConditionObject

01. await 流程

开始 Thread-0 持有锁,调用 await,进入 ConditionObject 的 addConditionWaiter 流程

创建新的 Node 状态为 -2(Node.CONDITION),关联 Thread-0,加入等待队列尾部

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第17张图片

接下来进入 AQS 的 fullyRelease 流程,释放同步器上的锁

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第18张图片

unpark AQS 队列中的下一个节点,竞争锁,假设没有其他竞争线程,那么 Thread-1 竞争成功

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第19张图片

park 阻塞 Thread-0

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第20张图片

总结:

  • 创建一个节点,关联当前线程,并插入到当前Condition队列的尾部
  • 调用fullRelease,完全释放同步器中的锁,并记录当前线程的锁重入数
  • 唤醒(park)AQS队列中的第一个线程
  • 调用park方法,阻塞当前线程。
02. signal 流程

假设 Thread-1 要来唤醒 Thread-0

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第21张图片

进入 ConditionObject 的 doSignal 流程,取得等待队列中第一个 Node,即 Thread-0 所在 Node

JUC并发编程(4)(自定义线程池 + 共享模型之工具1)_第22张图片

执行 transferForSignal 流程,将该 Node 加入 AQS 队列尾部,将 Thread-0 的 waitStatus 改为 0,Thread-3 的 waitStatus 改为 -1

image-20220314171749467

Thread-1 释放锁,进入 unlock 流程,略

总结:

  • 当前持有锁的线程唤醒等待队列中的线程,调用doSignal或doSignalAll方法,将等待队列中的第一个(或全部)节点插入到AQS队列中的尾部。
  • 将插入的节点的状态从Condition设置为0,将插入节点的前一个节点的状态设置为-1(意味着要承担唤醒后一个节点的责任)
  • 当前线程释放锁,parkAQS队列中的第一个节点线程。
03. 源码
public class ConditionObject implements Condition, java.io.Serializable {
    private static final long serialVersionUID = 1173984872572414699L;

    // 第一个等待节点
    private transient Node firstWaiter;

    // 最后一个等待节点
    private transient Node lastWaiter;
    public ConditionObject() { }
    // ㈠ 添加一个 Node 至等待队列
    private Node addConditionWaiter() {
        Node t = lastWaiter;
        // 所有已取消的 Node 从队列链表删除, 见 ㈡
        if (t != null && t.waitStatus != Node.CONDITION) {
            unlinkCancelledWaiters();
            t = lastWaiter;
        }
        // 创建一个关联当前线程的新 Node, 添加至队列尾部
        Node node = new Node(Thread.currentThread(), Node.CONDITION);
        if (t == null)
            firstWaiter = node;
        else
            t.nextWaiter = node;
        lastWaiter = node;
        return node;
    }
    // 唤醒 - 将没取消的第一个节点转移至 AQS 队列
    private void doSignal(Node first) {
        do {
            // 已经是尾节点了
            if ( (firstWaiter = first.nextWaiter) == null) {
                lastWaiter = null;
            }
            first.nextWaiter = null;
        } while (
            // 将等待队列中的 Node 转移至 AQS 队列, 不成功且还有节点则继续循环 ㈢
            !transferForSignal(first) &&
            // 队列还有节点
            (first = firstWaiter) != null
        );
    }

    // 外部类方法, 方便阅读, 放在此处
    // ㈢ 如果节点状态是取消, 返回 false 表示转移失败, 否则转移成功
    final boolean transferForSignal(Node node) {
        // 如果状态已经不是 Node.CONDITION, 说明被取消了
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;
        // 加入 AQS 队列尾部
        Node p = enq(node);
        int ws = p.waitStatus;
        if (
            // 上一个节点被取消
            ws > 0 ||
            // 上一个节点不能设置状态为 Node.SIGNAL
            !compareAndSetWaitStatus(p, ws, Node.SIGNAL) 
        ) {
            // unpark 取消阻塞, 让线程重新同步状态
            LockSupport.unpark(node.thread);
        }
        return true;
    }
    // 全部唤醒 - 等待队列的所有节点转移至 AQS 队列
    private void doSignalAll(Node first) {
        lastWaiter = firstWaiter = null;
        do {
            Node next = first.nextWaiter;
            first.nextWaiter = null;
            transferForSignal(first);
            first = next;
        } while (first != null);
    }

    // ㈡
    private void unlinkCancelledWaiters() {
        // ...
    }
    // 唤醒 - 必须持有锁才能唤醒, 因此 doSignal 内无需考虑加锁
    public final void signal() {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        Node first = firstWaiter;
        if (first != null)
            doSignal(first);
    }
    // 全部唤醒 - 必须持有锁才能唤醒, 因此 doSignalAll 内无需考虑加锁
    public final void signalAll() {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        Node first = firstWaiter;
        if (first != null)
            doSignalAll(first);
    }
    // 不可打断等待 - 直到被唤醒
    public final void awaitUninterruptibly() {
        // 添加一个 Node 至等待队列, 见 ㈠
        Node node = addConditionWaiter();
        // 释放节点持有的锁, 见 ㈣
        int savedState = fullyRelease(node);
        boolean interrupted = false;
        // 如果该节点还没有转移至 AQS 队列, 阻塞
        while (!isOnSyncQueue(node)) {
            // park 阻塞
            LockSupport.park(this);
            // 如果被打断, 仅设置打断状态
            if (Thread.interrupted())
                interrupted = true;
        }
        // 唤醒后, 尝试竞争锁, 如果失败进入 AQS 队列
        if (acquireQueued(node, savedState) || interrupted)
            selfInterrupt();
    }
    private void doSignalAll(Node first) {
        lastWaiter = firstWaiter = null;
        do {
            Node next = first.nextWaiter;
            first.nextWaiter = null;
            transferForSignal(first);
            first = next;
        } while (first != null);
    }

    // ㈡
    private void unlinkCancelledWaiters() {
        // ...
    }
    // 唤醒 - 必须持有锁才能唤醒, 因此 doSignal 内无需考虑加锁
    public final void signal() {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        Node first = firstWaiter;
        if (first != null)
            doSignal(first);
    }
    // 全部唤醒 - 必须持有锁才能唤醒, 因此 doSignalAll 内无需考虑加锁
    public final void signalAll() {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        Node first = firstWaiter;
        if (first != null)
            doSignalAll(first);
    }
    // 不可打断等待 - 直到被唤醒
    public final void awaitUninterruptibly() {
        // 添加一个 Node 至等待队列, 见 ㈠
        Node node = addConditionWaiter();
        // 释放节点持有的锁, 见 ㈣
        int savedState = fullyRelease(node);
        boolean interrupted = false;
        // 如果该节点还没有转移至 AQS 队列, 阻塞
        while (!isOnSyncQueue(node)) {
            // park 阻塞
            LockSupport.park(this);
            // 如果被打断, 仅设置打断状态
            if (Thread.interrupted())
                interrupted = true;
        }
        // 唤醒后, 尝试竞争锁, 如果失败进入 AQS 队列
        if (acquireQueued(node, savedState) || interrupted)
            selfInterrupt();
    }

    // 外部类方法, 方便阅读, 放在此处
    // ㈣ 因为某线程可能重入,需要将 state 全部释放
    final int fullyRelease(Node node) {
        boolean failed = true;
        try {
            int savedState = getState();
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }
    // 打断模式 - 在退出等待时重新设置打断状态
    private static final int REINTERRUPT = 1;
    // 打断模式 - 在退出等待时抛出异常
    private static final int THROW_IE = -1;
    // 判断打断模式
    private int checkInterruptWhileWaiting(Node node) {
        return Thread.interrupted() ?
            (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
        0;
    }
    // ㈤ 应用打断模式
    private void reportInterruptAfterWait(int interruptMode)
        throws InterruptedException {
        if (interruptMode == THROW_IE)
            throw new InterruptedException();
        else if (interruptMode == REINTERRUPT)
            selfInterrupt();
    }
    // 等待 - 直到被唤醒或打断
    public final void await() throws InterruptedException {
        if (Thread.interrupted()) {
            throw new InterruptedException();
        }
        // 添加一个 Node 至等待队列, 见 ㈠
        Node node = addConditionWaiter();
        // 释放节点持有的锁
        int savedState = fullyRelease(node);
        int interruptMode = 0;
        // 如果该节点还没有转移至 AQS 队列, 阻塞
        while (!isOnSyncQueue(node)) {
            // park 阻塞
            LockSupport.park(this);
            // 如果被打断, 退出等待队列
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        // 退出等待队列后, 还需要获得 AQS 队列的锁
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        // 所有已取消的 Node 从队列链表删除, 见 ㈡
        if (node.nextWaiter != null) 
            unlinkCancelledWaiters();
        // 应用打断模式, 见 ㈤
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
    }
    //向Condition中的等待队列中新增节点,并将此节点返回
    private Node addConditionWaiter() {
        Node t = lastWaiter;
        // If lastWaiter is cancelled, clean out.
        if (t != null && t.waitStatus != Node.CONDITION) {
            unlinkCancelledWaiters();
            t = lastWaiter;
        }
        Node node = new Node(Thread.currentThread(), Node.CONDITION);
        if (t == null)
            firstWaiter = node;
        else
            t.nextWaiter = node;
        lastWaiter = node;
        return node;
    }
    
    //判断当前节点是否在同步器中的队列中等待锁
    final boolean isOnSyncQueue(Node node) {
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        if (node.next != null) // If has successor, it must be on queue
            return true;
        /*
         * node.prev can be non-null, but not yet on queue because
         * the CAS to place it on queue can fail. So we have to
         * traverse from tail to make sure it actually made it.  It
         * will always be near the tail in calls to this method, and
         * unless the CAS failed (which is unlikely), it will be
         * there, so we hardly ever traverse much.
         */
        return findNodeFromTail(node);
    }
    // 等待 - 直到被唤醒或打断或超时
    public final long awaitNanos(long nanosTimeout) throws InterruptedException {
        if (Thread.interrupted()) {
            throw new InterruptedException();
        }
        // 添加一个 Node 至等待队列, 见 ㈠
        Node node = addConditionWaiter();
        // 释放节点持有的锁
        int savedState = fullyRelease(node);
        // 获得最后期限
        final long deadline = System.nanoTime() + nanosTimeout;
        int interruptMode = 0;
        // 如果该节点还没有转移至 AQS 队列, 阻塞
        while (!isOnSyncQueue(node)) {
            // 已超时, 退出等待队列
            if (nanosTimeout <= 0L) {
                transferAfterCancelledWait(node);
                break;
            }
            // park 阻塞一定时间, spinForTimeoutThreshold 为 1000 ns
            if (nanosTimeout >= spinForTimeoutThreshold)
                LockSupport.parkNanos(this, nanosTimeout);
            // 如果被打断, 退出等待队列
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
            nanosTimeout = deadline - System.nanoTime();
        }
        // 退出等待队列后, 还需要获得 AQS 队列的锁
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        // 所有已取消的 Node 从队列链表删除, 见 ㈡
        if (node.nextWaiter != null)
            unlinkCancelledWaiters();
        // 应用打断模式, 见 ㈤
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
        return deadline - System.nanoTime();
    }
    // 等待 - 直到被唤醒或打断或超时, 逻辑类似于 awaitNanos
    public final boolean awaitUntil(Date deadline) throws InterruptedException {
        // ...
    }
    // 等待 - 直到被唤醒或打断或超时, 逻辑类似于 awaitNanos
    public final boolean await(long time, TimeUnit unit) throws InterruptedException {
        // ...
    }
    // 工具方法 省略 ...
}

你可能感兴趣的:(Java并发JUC,java,jvm,redis)