洛谷P3435 [POI2006]OKR-Periods of Words

文章目录

  • 题目
  • 思路
  • 完整代码

部分格式不兼容,更好的阅读体验前往博客园

题目

传送门

这题意不是一般人能读懂的,为了读懂题目,我还特意去翻了题解[手动笑哭]

题目大意:

给定一个字符串s

对于s的每一个前缀子串s1,规定一个字符串Q,Q满足:Q是s1的前缀子串且Q不等于s1且s1是字符串Q+Q的前缀.设siz为所有满足条件的Q中Q的最大长度(注意这里仅仅针对s1而不是s,即一个siz的值对应一个s1)

求出所有siz的和

不要被这句话误导了:

求给定字符串所有前缀的最大周期长度之和

正确断句:求给定字符串 所有/前缀的最大周期长度/之和

我就想了半天:既然是"最大周期长度",那不是唯一的吗?为什么还要求和呢?

思路

其实这题要AC并不难(看通过率就知道)

看图

洛谷P3435 [POI2006]OKR-Periods of Words_第1张图片

要满足Q是s1的前缀,则Q的15位和s1的15位是一样的,又因为s1是Q+Q的前缀,所以又要满足s1的68位和Q+Q的68位一样,即s1的68位和Q的13位相等,回到s1,标蓝色的两个位置相等.

回顾下KMP中next数组的定义:next[i]表示对于某个字符串a,"a中长度为next[i]的前缀子串"与"a中以第i为结尾,长度为next[i]的非前缀子串"相等,且next[i]取最大值

是不是悟到了什么,是不是感觉这题和next数组冥冥之中有某种相似之处?

但是,这仅仅只是开始

按照题目的意思,我们要让Q的长度最大,也就是图中蓝色部分长度最小,但是next中存的是蓝色部分的最大值,显然,两者相违背,难道我们要改造next数组吗?明显不行,若next存储的改为最小值,则原来求next的方法行不通.考虑换一种思路(一定要对KMP中next的求法理解透彻,不然下面看不懂,不行的复习一下),我们知道对于next[i],next[next[i-1]],next[next[next[i]]]...都能满足"前缀等于以i结尾的子串"这个条件,且越往后,值越小,所以,我们的目标就定在上面序列中从后往前第一个不为0的next值

极端条件下,暴力跑可以去到O(n^2),理论上会超时(我没试过)

两种优化:

  1. 记忆化,时间效率应该是O(n)这里不详细讲,可以去到洛谷题解查看
  2. 倍增(我第一时间想到并AC的做法):
    我们将j=next[j]这一语句称作"j跳了一次"(感觉怪怪的),将next拓展为2维,next[i][k]表示结尾为i,j跳了2^k的前缀字符长度(也就是next[i][0]等价于原来的next[i])
    借助倍增LCA的思想(没学没关系,现学现用),这里不做赘述,上代码
		int tmp = i;
		for(rr int j = siz[i] ; j >= 0 ; --j)//siz[i]是next[i][j]中第一个为0的小标j,注意倒序枚举
			if(next[tmp][j] != 0)//如果不为0则跳
				tmp = next[tmp][j];

倍增方法在字符串长度去到106时是非常危险的,带个log理论是2*107左右,常数再大那么一丢丢就TLE了,还好数据比较水,但是作为倍增和KMP的练习做一下也是不错的

最后,记得开longlong(不然我就一次AC了)

完整代码

#include 
#include 
#include 
#define nn 1000010
#define rr register
#define ll long long
using namespace std;
int next[nn][30] ;
int siz[nn];
char s[nn];
int n;
int main() {
//	freopen("P3435_3.in" , "r" , stdin);
	cin >> n;
	do
		s[1] = getchar();
	while(s[1] < 'a' || s[1] > 'z');
	for(rr int i = 2 ; i <= n ; i++)
		s[i] = getchar();
	
	next[1][0] = 0;
	for(rr int i = 2 , j = 0 ; i <= n ; i++) {
		while(j != 0 && s[i] != s[j + 1])
			j = next[j][0];
		if(s[j + 1] == s[i])
			++j;
		next[i][0] = j;
	}
	
	rr int k = log(n) / log(2) + 1;
	for(rr int j = 1 ; j <= k ; j++)
		for(rr int i = 1 ; i <= n ; i++) {
			next[i][j] = next[next[i][j - 1]][j - 1];
			if(next[i][j] == 0)
				siz[i] = j;
		}
	ll ans = 0;
	for(rr int i = 1 ; i <= n ; ++i) {
		int tmp = i;
		for(rr int j = siz[i] ; j >= 0 ; --j)
			if(next[tmp][j] != 0)
				tmp = next[tmp][j];
		if(2 * (i - tmp) >= i && tmp != i)
			ans += (ll)i - tmp;
	}
	cout << ans;
	return 0;
} 

你可能感兴趣的:(洛谷P3435 [POI2006]OKR-Periods of Words)