代码随想录Day56 | 583. 两个字符串的删除操作 、72. 编辑距离

583. 两个字符串的删除操作

dp含义:dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

递推公式:考虑两种情况

dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

初始化:

vector> dp(word1.size() + 1, vector(word2.size() + 1));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;

 遍历顺序:从上到下,从左到右

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector> dp(word1.size() + 1, vector(word2.size() + 1));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};

方法二:求出两个字符串的最长公共子序列长度,用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

72. 编辑距离

尝试理解,二刷搞明白

你可能感兴趣的:(算法,数据结构)