4.2 onnx简化模型结构

前言

对已有的onnx结构,进行简化操作,onnx提供两种常规操作

方式一

假设为 model.onnx, 比较简单粗暴

# 简化
onnxsim model.onnx model_sim.onnx

方式二

稍微复杂点,代码有点多

import onnx
import argparse
from onnxsim import simplify

# Simplify
def simplify_model(args):
    onnx_model = onnx.load(args.origin_model)
    model_simp, check = simplify(onnx_model)
    model_simp = onnx.shape_inference.infer_shapes(model_simp)
    onnx.save(model_simp, args.output_model)
    print("  Simplify onnx Done.")

# 检查onnx计算图
def checknet(model_path):
    model = onnx.load(model_path)
    onnx.checker.check_model(model)  
    # Print a human readable representation of the graph
    # print(onnx.helper.printable_graph(model.graph))
    
def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--origin_model", type=str)
    parser.add_argument("--output_model", type=str)
    args = parser.parse_args()
    return args

if __name__ == "__main__":
    args = parse_args()
    simplify_model(args

总结

  • 两种本质上没用改变,都是通过调用onnxsim进行操作
  • 看个人使用时机

你可能感兴趣的:(模型推理,性能优化)