- DeepSeek使用中的问题及解决方案(部分)
WeiLai1112
DeepSeek人工智能
1.模型部署与配置问题问题1:环境依赖冲突现象:安装模型依赖库时出现版本不兼容(如Python、PyTorch版本冲突)。解决方案:使用虚拟环境(如conda或venv)隔离依赖。严格按照官方文档的版本要求安装依赖,例如:condacreate-ndeepseekpython=3.9condaactivatedeepseekpipinstalltorch==2.0.1transformers==4
- vue3 项目如何接入 AI 大模型
代码搬运媛
人工智能
以下是在Vue3项目中接入AI大模型的一般步骤:准备工作确定要接入的AI模型,如OpenAI的gpt-3.5-turbo、科大讯飞的星火大模型等。选择AI模型及获取API密钥:注册对应AI平台的账号,进入账户设置页面找到“ViewAPIKeys”或类似选项,创建属于自己的API密钥,并妥善保存。创建Vue项目并安装依赖打开命令行,使用vuecreate项目名命令创建一个新的Vue项目,按照提示完成
- 数据库基础以及 MySQL 知识点
阿绵
计算机基础数据库mysql
文章目录1、基本概念2、主键和外键的区别2.1、使用外键的优劣3、数据库范式4、drop、delete与truncate区别?5、MySQL1、基础概念2、存储引擎2.1、InnoDB和MyISAM区别2.2、InnoDB如何保持事务的四大特性(实现事务的原理)3、锁机制与InnoDB锁算法3.1、表级锁和行级锁对比4、事务4.1、ACID特性4.2、并发事务带来的问题4.3、事务隔离级别1、基本
- TensorFlow LiteRT 概览
姚家湾
tensorflow人工智能python
LiteRT(简称LiteRuntime,以前称为TensorFlowLite)是Google面向设备端AI的高性能运行时。您可以找到适用于各种机器学习/AI任务的LiteRT就绪模型,也可以使用AIEdge转换和优化工具将TensorFlow、PyTorch和JAX模型转换为TFLite格式并运行。主要特性针对设备端机器学习进行了优化:LiteRT解决了五项关键的ODML约束条件:延迟时间(无需
- 【拥抱AI】如何实现AI外呼通话,并与客户达成确认
奔跑草-
人工智能人工智能
实现AI外呼通话并与客户达成确认涉及多个技术组件和步骤。以下是一个基本的流程和技术方案,仅供参考。1.技术选型与准备主要技术组件语音识别(ASR):将客户的语音转换为文本。自然语言处理(NLP):理解和生成自然语言对话。语音合成(TTS):将文本转换为客户可以听到的语音。呼叫平台/API:用于发起和管理电话呼叫。数据库:存储客户信息、通话记录等数据。业务逻辑层:处理对话管理和决策逻辑。2.系统架构
- 使用 Rebuff 进行Prompt Injection的检测和防护
scaFHIO
promptpython
技术背景介绍在AI应用领域,PromptInjection(PI)攻击是一种通过恶意输入操控AI模型行为的攻击方式。这可能导致严重的安全问题,比如数据泄露、执行未授权的操作等。因此,检测和防护PI攻击对保障AI系统安全至关重要。Rebuff是一个自硬化的PromptInjection检测器,通过多阶段防御机制来保护AI应用免受PI攻击。本文将介绍Rebuff的核心原理、代码实现及其在实际开发中的应
- 华为的云端训练算力与迭代效率
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
华为云、云端训练、算力、迭代效率、人工智能、深度学习、模型训练、分布式训练、优化算法1.背景介绍人工智能(AI)技术近年来发展迅速,深度学习作为其核心驱动力,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,深度学习模型的训练需要海量数据和强大的计算资源,这成为AI技术发展面临的瓶颈之一。云计算作为一种新型的计算模式,为深度学习提供了强大的算力支持。华为云作为国内领先的云计算平台,在
- Day48(补)【AI思考】-设计模式三大类型统一区分与记忆指南
一个一定要撑住的学习者
#AI深度思考学习方法设计模式
文章目录设计模式三大类型统一区分与记忆指南**一、创建型模式(对象如何生?)****二、结构型模式(对象如何组?)****三、行为型模式(对象如何动?)****1.行为型类模式(靠继承)****2.行为型对象模式(靠组合)****四、统一对比表****五、终极记忆技巧**设计模式三大类型统一区分与记忆指南让思想碎片重焕生机的灵魂:行为模式分三类,每一类又有好多不同的模式,特别是行为式模式,还要区分
- 使用Yuan 2.0与LangChain构建智能聊天应用:完整指南
scaFHIO
langchainpython
技术背景介绍Yuan2.0是IEIT系统开发的新一代基础大语言模型,包括Yuan2.0-102B、Yuan2.0-51B和Yuan2.0-2B三种版本。相比之前的Yuan1.0,Yuan2.0使用了更广泛的高质量预训练数据,并通过指令微调数据集增强了模型的语义理解、数学推理、编程知识等能力。为了方便开发者集成,Yuan2.0提供了兼容OpenAIAPI的服务接口。本文将介绍如何通过LangChai
- 使用LM Studio在WordPress基于大模型原创文章上稿进行SEO优化
Mr数据杨
Python自然语言技术wordpress大模型seo1024程序员节
在进行自动化文章生成与发布的流程中,首先需要确保基础配置的完善性和数据的准确性。通过手动设置分类和标签,文章能够在发布时被准确归类,从而提升SEO的效果。通过Excel表格的方式管理这些分类与标签,结合Python脚本,可以高效地实现自动化文章的生成和发布。该流程依赖于对WordPress数据库的操作,包括标签的批量导入、分类和标签的映射,以及通过AI生成内容的自动发布。全面的配置不仅节省了手动处
- uniapp邪门事件
岑梓铭
前端问题uni-app
很久之前在这篇《THREEJS在uni-app中使用(微信小程序)》:THREEJS在uni-app中使用(微信小程序)_uni-app_帶刺的小葡萄-华为开发者空间中学到了如何在uniapp的微信小程序里接入three.js的3d模型由于小程序自身很多不兼容原因,博主建议去用GitHub一个大佬改写的js库来引入适合小程序的three.js,于是我去照搬模仿,然后手动检查了一下,确实可以正常运行
- Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention
UnknownBody
LLMDailyLLMcontext语言模型人工智能
本文是LLM系列文章,针对《LeaveNoContextBehind:EfficientInfiniteContextTransformerswithInfini-attention》的翻译。不让任何上下文掉队:无限关注的高效无限上下文Transformer摘要1引言2方法3实验4相关工作5结论摘要这项工作介绍了一种将基于Transformer的大型语言模型(LLM)扩展到具有有限内存和计算的无限
- 大厂面试真题-说说DDD中的防腐层以及它和四层架构的关系
鱼跃鹰飞
大厂真题DDD架构设计1024程序员节职场和发展开发语言面试
DDD(领域驱动设计)中的防腐层(Anti-CorruptionLayer,ACL)是一种设计模式,旨在解决不同子系统或限界上下文间由于领域模型或接口不兼容而带来的集成问题。以下是对DDD防腐层的详细介绍,以及它与四层架构的关系:一、DDD防腐层定义:防腐层是一种在不同应用间转换的机制,通过引入一层适配层来隔离和转换不同系统间的交互。作用:隔离领域模型:保护自身领域模型免受其他领域模型代码的侵害。
- 使用Cohere进行文本生成: 从安装到实战
shuoac
python开发语言
Cohere是一家加拿大初创公司,提供自然语言处理模型,帮助企业提升人机交互体验。本文将详细介绍如何使用Cohere进行文本生成,包括环境配置、核心原理、代码演示和实际应用场景分析。1.技术背景介绍随着自然语言处理技术的快速发展,基于大模型的文本生成应用在各行各业中展现出了巨大的潜力。Cohere提供了高效、易用的API,使得开发者能够快速集成高质量的文本生成能力。本文将带你一步步实现这些功能。2
- KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
魔王阿卡纳兹
大模型知识札记语言模型人工智能自然语言处理
KTransformers通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度,具体体现在以下几个方面:内核级优化:KTransformers采用了高效的内核级优化技术,包括对Transformer模型中的关键操作进行优化。例如,通过使用Llama和Marlin等高效内核,显著提升了计算效率。通过IntelAMX指令集优化,KTransformers在CPU端实现了更高的
- 层次分析法(AHP, Analytic Hierarchy Process)
时代的狂
读书摘要笔记
层次分析法(AHP,AnalyticHierarchyProcess)是一种多层次、多因素的决策分析方法,用于解决复杂的决策问题。它通过将问题结构化,将决策目标分解为多个层次,并对不同的决策因素进行比较,进而得出各因素的相对重要性,并帮助决策者做出合理的决策。层次分析法的基本步骤建立层次结构模型首先将决策问题分解为多个层次,通常包括目标层、准则层(即影响决策的主要因素)、子准则层(即对准则进一步细
- Pytorch实现论文之利用多生成器来预防模式崩溃
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集人工智能python生成对抗网络机器学习pytorch深度学习计算机视觉
简介简介:一般来说,生成器相比判别器要完成的任务更加困难,前者需要完成数据概率密度的拟合,而后者只需要判别真伪,影响GAN性能的一个问题就是模式奔溃。而采用多生成器可以缓解这个问题。论文中主要设计了多生成器的架构和一个对于鉴别器的新损失设计来缓解这个问题。模型结构采用DCGAN的框架,原始损失基于WGAN-GP的设计理念。论文题目:StudyofPreventionofModeCollapsein
- HCIA网络层协议与IP编址
夏の橘
HCIA学习之路网络
摘要:网络层是OSI模型中的核心层级,负责实现跨网络的数据传输。本文深入解析HCIA认证要求的网络层协议(IP/ICMP/ARP)及IP编址技术,涵盖子网划分、NAT原理及数据转发流程,帮助读者掌握网络层关键技术。目录一、网络层协议核心功能二、核心协议解析1.IP协议(InternetProtocol)2.ICMP协议3.ARP协议三、IPv4编址技术详解1.地址结构与分类关键细节2.子网划分实践
- 信息管理与信息系统专业总结&不存在计算机专业歧视
WhyteHighmore
感悟与总结
所有边缘交叉学科的人,这篇文章都适用就像我的专业信息管理与信息系统那样!多而不精,而我也同样继承了我专业的特点,但计算机除外。但我很庆幸选报这个专业,也很推荐这个专业。它能让你在高考报考的迷茫期后有更多的选择余地,你可以通过专业了解三大行业,并作出对某一个喜欢行业的努力,不至于学习的不是喜欢的。比如本次vivo组织的篮球赛,上面有说。初次之外我参加过手球赛、羽毛球赛、排球赛。学过网球、游泳、乒乓球
- ZBrush:导出与导入ZBrush模型_2024-07-15_19-55-08.Tex
chenjj4003
游戏开发zbrush1024程序员节贴图substancepainter数码相机android
ZBrush:导出与导入ZBrush模型ZBrush模型导出基础了解ZBrush的导出格式ZBrush是一款强大的数字雕塑和绘画软件,它支持多种模型导出格式,以适应不同的下游应用需求。在ZBrush中,最常见的导出格式包括:OBJ:一种广泛支持的3D模型格式,可以包含顶点、面、纹理坐标和法线信息。STL:常用于3D打印,仅包含顶点和面信息,不支持纹理和颜色。FBX:支持动画和骨骼,是游戏和电影行业
- 深入浅出:CUDA是什么,如何利用它进行高效并行计算
码上飞扬
CUDA
在当今这个数据驱动的时代,计算能力的需求日益增加,特别是在深度学习、科学计算和图像处理等领域。为了满足这些需求,NVIDIA推出了CUDA(ComputeUnifiedDeviceArchitecture),这是一种并行计算平台和编程模型。本文将带你全面了解CUDA的基本概念、工作原理及其应用场景。一、什么是CUDA?CUDA(ComputeUnifiedDeviceArchitecture)是由
- 【深度学习】学习率调度策略
黑白交界
深度学习学习深度学习
什么是学习率可以理解为模型在每一次迭代中的模型更新调整的幅度,“学习”新信息的速度。学习率定义了模型权重(参数)在梯度下降或其他优化算法中的更新步伐。较大的学习率意味着在每次参数更新时,模型会进行更大幅度的调整,而较小的学习率则意味着细致的、渐进的调整。适当的学习率可以帮助模型跳出局部最优解。当使用较大的学习率时,模型有可能跨越一些小的局部最优,从而找到全局最优解,但也有可能错过全局最优。因此,在
- 使用LangChain与Clarifai模型进行交互
vaidfl
langchain交互python
在现代AI应用开发中,Clarifai提供了一个完整的AI生命周期管理平台,包括数据探索、数据标注、模型训练、评估和推理。本文将探讨如何使用LangChain库与Clarifai的模型进行交互。技术背景介绍Clarifai是一个全面的AI平台,专注于模型的构建和部署。要开始使用Clarifai,你需要一个账户和个人访问令牌(PAT)。确保先在Clarifai获取或创建你的PAT。核心原理解析通过L
- 【深度学习pytorch-93】Transformer 相比 RNN 的优势
华东算法王
DL-pytorch深度学习pytorchtransformer
Transformer相比RNN的优势Transformer和RNN(循环神经网络)都是自然语言处理(NLP)领域的重要架构,但它们的工作原理和应用方式有很大不同。Transformer由于其独特的结构和机制,在多个方面优于RNN。以下是Transformer相比RNN的主要优势:1.并行计算能力RNN的局限性RNN是按顺序处理输入的,即每个时间步的输出都依赖于前一个时间步的输出。这意味着,在训练
- 深度学习模型中的知识蒸馏是如何工作的?
c++服务器开发
深度学习人工智能
深度学习模型在多个领域,特别是计算机视觉和自然语言处理中,已经取得了革命性的进展。然而,随着模型复杂性和资源需求的不断攀升,如何将这些庞大模型的知识浓缩为更紧凑、更高效的形式,成为了当前研究的热点。知识蒸馏,作为一种将知识从复杂模型转移到更简单模型的策略,已经成为实现这一目标的有效工具。在本文中,我们将深入探究深度学习模型中知识蒸馏的概念、原理及其在各领域的应用,以期为读者提供一个全面而严谨的视角
- 使用LangChain与AI21Jurassic模型进行交互
fgayif
langchain交互python
在本指南中,我们将探讨如何使用LangChain与AI21的Jurassic模型进行交互。为了使用Jamba模型,请使用ChatAI21对象。您可以在LangChain上查看AI21模型和工具的完整列表。环境准备首先,我们需要安装langchain-ai21库。!pipinstall-qUlangchain-ai21环境设置在开始之前,我们需要获取AI21的API密钥,并设置AI21_API_KE
- AnythingLLM 项目安装与配置指南
龙聪山Diane
AnythingLLM项目安装与配置指南anything-llm为开源和闭源的大型语言模型(LLMs)、嵌入器和向量数据库提供开源的ChatGPT体验。在一个应用中提供无限的文档、消息和并发用户,以及权限管理。项目地址:https://gitcode.com/gh_mirrors/an/anything-llm1.项目基础介绍和主要编程语言AnythingLLM是一个全栈应用程序,旨在帮助用户将任
- 同步&异步日志系统-设计模式
2401_82609762
设计模式
六大原则单⼀职责原则(SingleResponsibilityPrinciple)类的职责应该单⼀,⼀个⽅法只做⼀件事。职责划分清晰了,每次改动到最⼩单位的⽅法或类。使⽤建议:两个完全不⼀样的功能不应该放⼀个类中,⼀个类中应该是⼀组相关性很⾼的函数、数据的封装⽤例:⽹络聊天:⽹络通信&聊天,应该分割成为⽹络通信类&聊天类开闭原则(OpenClosedPrinciple)对扩展开放,对修改封闭使⽤建
- Ollama部署大模型并安装WebUi
m0_74823611
java
Ollama用于在本地运行和部署大型语言模型(LLMs)的工具,可以非常方便的部署本地大模型安装Linuxcurl-fsSLhttps://ollama.com/install.sh|sh我是ubuntu系统安装,其他系统可以看项目的开源地址有写GitHub-ollama/ollama:GetupandrunningwithLlama3,Mistral,Gemma,andotherlargelan
- 吐血整理!权重持久化方案优化,让你的模型性能飙升
盼达思文体科创
经验分享
吐血整理!权重持久化方案优化,让你的模型性能飙升引言你是否在做深度学习项目时,遭遇过模型训练结果无法有效保存,导致之前的努力付诸东流的痛苦?又或者在模型权重持久化时,发现保存和加载的速度极慢,严重影响项目进度?今天咱们就来好好聊聊权重持久化方案的优化,帮你解决这些让人头疼的问题!核心内容❗传统方案痛点:大多数人都踩过的坑在很多深度学习项目里,大家常用的权重持久化方案存在不少问题。比如说,使用普通的
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。