- 【知识图谱构建系列1】数据集介绍
几道之旅
人工智能智能体及数字员工Python杂货铺AI自建MCP学习记录知识图谱
文章目录项目简介数据集简介数据集核心内容应用与影响小细节参考论文:hal.science/hal-04862214/项目地址:https://github.com/ChristopheCruz/LLM4KGC/项目简介我们所要学习的项目(LLM4KGC)聚焦于利用大语言模型(LLMs)实现从文本到知识图谱(Text-to-KnowledgeGraph,T2KG)的自动化构建,旨在探索高效可靠的知识
- Python版-LeetCode 学习:438. 找到字符串中所有字母异位词
guyu1003
LeetCode算法字符串pythonleetcode算法
给定一个字符串s和一个非空字符串p,找到s中所有是p的字母异位词的子串,返回这些子串的起始索引。字符串只包含小写英文字母,并且字符串s和p的长度都不超过20100。说明:字母异位词指字母相同,但排列不同的字符串。不考虑答案输出的顺序。示例1:输入:s:"cbaebabacd"p:"abc"输出:[0,6]解释:起始索引等于0的子串是"cba",它是"abc"的字母异位词。起始索引等于6的子串是"b
- 2025年中总结
Just Jump
人生经历思考反思认知方法2025年中总结
2025年中总结。一如往年惯例,总结近半年工作中的体悟和经验。一、把大而难的事拆解成小而具体的小目标。专注解决小目标,每周迭代交付,先完成再完善。1.1把大任务拆解成具体可执行的小目标2025年5月起我开始做大模型相关的技术调研、技术升级和开发工作。传统的机器学习、深度学习算法和大模型的算法在技术知识上还是有很大的差异的。想要快速转型使用大模型做开发、训练,是需要些时间和精力投入的,这并不是一个简
- 从零到云:我在达内一年的Linux云计算培训之旅
博客简介本篇博文中,我将从学员身份去分享过去一年里在达内教育培训有关Linux云计算的学习经历和收获,旨在为那些渴望踏入云计算领域的初学者提供一份指南参考,同时也尝试把笔记内容进行整理输出并分享给大家。无论你是刚接触IT的新手,还是希望通过报名培训机构转型的职场人,希望这份笔记能为你揭示关于培训机构里的Linux云计算基础知识和实践技巧。大纲概览培训笔记将按照机构课程顺序由简入深进行分享,总共分为
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- 小程序学习笔记:判断分页数据边界,优化性能
you4580
学习笔记小程序
在小程序开发过程中,数据分页展示是常见的功能需求。但如果处理不当,可能会出现无效的数据请求,影响程序性能。今天咱们就来深入探讨如何在小程序开发里精准判断是否还有下一页数据,并避免发起多余请求。一、问题引入假设有80条美食数据,每页展示10条,理论上8页就能展示完。但在实际操作时,你有没有想过,会不会出现请求第9页、第10页数据这种情况呢?答案是肯定的。就像在开发美食类小程序时,用户不断上拉加载新数
- 小程序学习笔记:实现分页加载商铺列表数据并渲染 UI
you4580
学习笔记小程序
在微信小程序开发中,实现分页加载指定分类下的商铺列表数据,并进行UI渲染是常见的功能需求。本文将详细介绍这一功能的实现过程,包括API接口调用、数据请求、数据处理以及UI渲染和样式美化,同时附上相应代码,帮助大家更好地理解和实践。一、API接口与数据请求(一)API接口地址我们要调用的API接口地址包含一个动态参数:cat_id,这个参数用于指定分类的ID。例如,如果要请求美食分类下的所有商铺列表
- SafeMimic:迈向安全自主的人-到-机器人模仿移动操作
三谷秋水
智能体机器学习人工智能安全机器人人工智能机器学习
25年6月来自德州Austin分校的论文“SafeMimic:TowardsSafeandAutonomousHuman-to-RobotImitationforMobileManipulation”。机器人要想成为高效的家居助手,必须学会仅通过观察人类操作即可完成新的移动操作任务。仅凭人类的单个视频演示进行学习极具挑战性,因为机器人需要首先从演示中提取需要完成的任务及其方法,将策略从第三人称视角
- 【JAVA学习】泛型
我不会写代码njdjnssj
学习
传统方法不能对加入到集合ArrayList中的数据类型进行约束,遍历的时候需要进行类型转换,如果集合中的数据量较大,对效率有影响。泛型又称参数化类型,是JDK5.0出现的新特性,解决数据类型的安全性问题,在类声明或实例化时只要指定好需要的具体类型即可。泛型的好处:1)编译时,检查添加元素的类型,提高了安全性。2)减少了类型转换的次数,提高效率。Dog->Dog->Dog不加泛型的话:Dog加入->
- 多模态AI:让机器像人一样“全感官”理解世界
Echo_Wish
前沿技术人工智能人工智能
多模态AI:让机器像人一样“全感官”理解世界咱们人类理解世界,从来不是只靠单一感官:眼睛看到画面,耳朵听到声音,皮肤感受到温度,嘴巴尝到味道,甚至鼻子闻到气味。正是这多感官的“多模态”输入,构筑了我们对复杂世界的深刻认知。而人工智能领域的多模态学习(MultimodalLearning),正是让机器拥有“多感官”理解能力的技术突破。今天,我想跟大家聊聊:多模态学习为何重要?当前有哪些创新模型?如何
- 2-感知机学习算法
罗东琦
统计学习笔记
感知机模型感知机学习策略学习算法算法收敛性对偶形式与线性SVM的异同感知机(perceptron)是一个线性二分类模型,其目的是寻找一个超平面将正负示例划分开,属于判别模型,也是神经网络与SVM的基础。感知机模型假设输入空间为χ⊆Rnχ⊆Rn,输出空间为Υ⊆{+1,−1}Υ⊆{+1,−1}。输入x∈χx∈χ表示实例的特征向量,输出y∈Υy∈Υ表示实例的类别。则下面的函数f(x)=sign(w⋅x+
- 【PaddleOCR】快速集成 PP-OCRv5 的 Python 实战秘籍--- PaddleOCR实例化 OCR 对象的参数介绍
云天徽上
PaddleOCRpythonocr开发语言人工智能文字识别
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 感知机学习
Collin_NLP
机器学习Python
基本概念:感知机是二类分类的线性分类模型,对应于特征空间中将实例划分为正负两类的分离超平面,属判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面。感知机的定义:从输入空间Rn到输出空间{+1,-1}的函数映射:f(x)=sign(w*x+b)模型参数:w----权值向量b----偏置wx+b=0-----分离超平面方程数据集{(xi,yi)}with1给定训练集,正例x1=(3,3)x
- 【微信小程序学习】搜索音乐页面代码实现
2401_84434880
程序员微信小程序学习notepad++
}/*热搜榜*/.hotContainer.title{font-size:28rpx;height:80rpx;line-height:80rpx;border-bottom:1rpxsolid#eee;}.hotList{display:flex;flex-wrap:wrap;}.hotItem{width:50%;height:80rpx;line-height:80rpx;font-siz
- 最新人工智能硬件培训AI基础入门学习课程参考2025版(离线AI语音视觉识别篇)
聆思科技AI芯片
聆思大模型开发板实践分享语音识别人机交互人工智能视觉检测嵌入式硬件mcuAI编程
前言端侧离线AI智能硬件作为AI技术的重要载体之一,凭借其无需依赖网络即可实现智能功能的特性,在一些网络条件受限或对数据隐私有较高要求的场景中,发挥着不可或缺的作用。本章基于CSK6大模型语音视觉开发板开箱即用的离线AI能力,分类列出学习课程知识点和实操参考,希望能够帮助大家快速掌握离线AI智能硬件的基础知识与实战技能,同时了解相关AI技术在实际场景的应用情况。正文按入下框架展开,相关理论和实操除
- 全网最全学习Zephyr开发中文教程资料汇总-从基础文档视频到上手实操示例
聆思科技AI芯片
Zephyr保姆级上手教程zephyrAIGC多模态嵌入式硬件iot硬件工程驱动开发
Zephyr作为一款开源且极具灵活性与可扩展性的实时操作系统(RTOS),拥有原生的BLE协议栈、完整的Net协议栈,涵盖TCP/IP与应用层协议,具备出色的实时性,支持硬实时任务调度,确保系统响应的确定性延迟,并且内存占用极小。丰富的通信机制、深度集成的电源管理模式等,也进一步提升了其在嵌入式领域的竞争力。然而,要深入掌握Zephyr开发并非一蹴而就之事。为了方便大家顺利踏上Zephyr开发之路
- Python Requests 与 RESTful API 的交互实践
AI天才研究院
AI人工智能与大数据pythonrestful交互ai
PythonRequests与RESTfulAPI的交互实践关键词:PythonRequests、RESTfulAPI、HTTP请求、API交互、JSON数据处理摘要:本文将带你从“零基础”到“实战高手”,用通俗易懂的语言和生活案例,拆解PythonRequests库与RESTfulAPI交互的核心逻辑。我们将学习如何用Requests发送GET/POST/PUT/DELETE等常见HTTP请求,
- 最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)
聆思科技AI芯片
聆思大模型开发板实践分享大模型语音交互人工智能语音识别视觉检测AI编程人机交互
前言在人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活教育等领域发挥着越来越重要的作用。针对日前前来咨询的广大客户对面向大模型智能硬件的学习需求,我们根据CSK6大模型语音视觉开发板已有功能,整理了一份适合基于本开发板进行教学活动的学习课程参考给大家备
- 机器学习,支持向量机svm和决策树xgboost介绍
suixinm
支持向量机机器学习决策树
支持向量机(SVM)和XGBoost都是非常强大且应用广泛的机器学习算法,但它们基于不同的原理,各有其优势和劣势,适用于不同的场景。以下是两者的主要区别和优劣势对比:1.核心思想与模型类型:SVM:核心思想:找到一个最优的超平面(在特征空间中),将不同类别的样本分隔开,并且使得该超平面到两类样本中最近的样本点(支持向量)的距离(间隔)最大化。核心是几何间隔最大化。模型类型:单个模型(虽然是核方法,
- 跨届资源汇聚地:校友平台开启终身学习与职业互助新模式
IDZSY0430
学习大数据运维开发用户运营流量运营
引言在知识经济时代,“校友”二字早已超越单纯的情感符号,演变为蕴含巨大潜能的资源网络。传统校友关系受限于时空隔阂与信息壁垒,难以实现深度互动与资源共享。如今,依托智能化校友平台,一个打破届别、跨越地域的终身学习与职业互助新生态正加速形成,成为驱动个体成长与社群繁荣的核心引擎。一、资源整合:构建校友生态系统的数字基石校友平台的底层逻辑在于系统性整合碎片化资源,为跨届协作奠定量化基础:动态校友数据库平
- 【学习】《算法图解》第十章学习笔记:贪婪算法
程序员
一、贪婪算法概述贪婪算法(GreedyAlgorithm)是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。贪婪算法不从整体最优上加以考虑,它所做出的选择只是在某种意义上的局部最优选择。(一)算法适用场景贪婪算法适用于具有"贪心选择性质"的问题,即局部最优选择能导致全局最优解的问题。主要应用于:需要求解最优化问题问题具有贪心选择性质问题具有最优子结构性质(二
- Java多线程编程中容易混淆的Thread.sleep()与Object.wait()深度解析
前言在Java多线程编程的学习和实践过程中,我发现很多初学者(包括曾经的我)经常混淆Thread.sleep()和Object.wait()这两个方法的使用场景。本文将通过代码示例、时序图和内存变化图,深入分析这两个方法的区别,并分享我在实际项目中使用它们解决线程同步问题的经验。一、基本概念对比1.Thread.sleep()//使当前线程暂停执行指定的毫秒数Thread.sleep(1000);
- 学习以任务为中心的潜动作,随地采取行动
三谷秋水
计算机视觉智能体大模型计算机视觉语言模型机器人人工智能深度学习
25年5月来自香港大学、OpenDriveLab和智元机器人的论文“LearningtoActAnywherewithTask-centricLatentActions”。通用机器人应该在各种环境中高效运行。然而,大多数现有方法严重依赖于扩展动作标注数据来增强其能力。因此,它们通常局限于单一的物理规范,难以学习跨不同具身和环境的可迁移知识。为了突破这些限制,UniVLA,是一个用于学习跨具身视觉-
- 剑指offer第二版学习笔记(一)前言
虚空来袭
剑指offer第二版剑指Offer第2版
久闻剑指offer大名,如今我也到了要找工作的时候了,趁现在还有时间,多学一点是一点,在此开一个分集记录一下在学习剑指offer过程中的一些经验和想法。注:使用的书籍是剑指offer第二版。本期内容书籍内容书籍内容简介结语本期仅写了书籍内容介绍,作者还总结了书籍特色、对创作过程中家人、朋友等进行了感谢,我略去了这些部分。下期应该是接着看第一部分。
- 【Transformer论文】通过蒙面多模态聚类预测学习视听语音表示
Wwwilling
推荐系统论文阅读Transformer系列论文transformer聚类多模态
文献题目:LEARNINGAUDIO-VISUALSPEECHREPRESENTATIONBYMASKEDMULTIMODALCLUSTERPREDICTION发表时间:2022发表期刊:ICLR摘要语音的视频记录包含相关的音频和视觉信息,为从说话者的嘴唇运动和产生的声音中学习语音表示提供了强大的信号。我们介绍了视听隐藏单元BERT(AV-HuBERT),这是一种用于视听语音的自我监督表示学习框架
- 对比2个数据库:google Cloud Firestore 和 supabase
waterHBO
数据库云端数据库
帮我对比一下:CloudFirestore和supabase尤其是,是否免费,注册难度,是否需要银行卡注册,我没有国外的银行卡(我在中国大陆)。以及免费额度是多少,上手难度,即,学习曲线因为我平时一般是写小项目,我的数据库一般使用json或是sqlite3第1个回答好问题!下面是CloudFirestore(Firebase)和Supabase的全面对比,特别关注了中国大陆用户关心的注册、费用、学
- 从零开始大模型开发与微调:PyTorch中的卷积函数实现详解
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch中的卷积函数实现详解1.背景介绍1.1大模型开发的意义1.2卷积神经网络在大模型中的应用1.3PyTorch框架简介2.核心概念与联系2.1卷积的数学定义2.2卷积神经网络的组成2.2.1卷积层2.2.2池化层2.2.3全连接层2.3卷积与大模型的关系3.核心算法原理具体操作步骤3.1卷积的前向传播3.2卷积的反向传播3.3卷积的优化策略3.3.1卷积核大小
- 【Spring AI】 1接入 Ollama实践
占星安啦
springaijavaspringaiollama
SpringAI接入Ollama实践学习笔记Ollama官方文档SpringAI快速开始SpringAIOllama集成文档1.pom.xml依赖配置前置条件:请确保你已安装好Java17+、Maven、Ollama,并已下载好所需大模型。在pom.xml中添加SpringAI及Ollama相关依赖:org.springframework.bootspring-boot-starter-webor
- AWS Cognito项目实战指南:集成用户管理与自定义电子邮件功能
一一MIO一一
本文还有配套的精品资源,点击获取简介:本项目涉及利用AWSCognito服务,创建一个基于云端的用户身份验证和管理应用。通过集成Cognito用户池,项目支持社交登录和自定义用户身份保护,同时涉及通过AWSLambda发送自定义电子邮件通知,增强用户体验。项目采用TypeScript编程语言,提升代码的可维护性和可读性,为开发者提供一个学习AWS无服务器认证解决方案的实践案例。1.AWSCogni
- 机器学习在智能仓储中的应用:库存管理与物流优化
Blossom.118
机器学习与人工智能机器学习人工智能深度学习机器人sklearntensorflowcnn
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。随着电子商务的蓬勃发展,仓储和物流行业面临着前所未有的挑战和机遇。智能仓储通过整合先进的信息技术,如物联网(IoT)、大数据和机器学习,能够实现从货物入库到出库的全流程
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l