- 【LLM】从零开始实现 LLaMA3
FOUR_A
LLM人工智能机器学习大模型llama算法
分词器在这里,我们不会实现一个BPE分词器(但AndrejKarpathy有一个非常简洁的实现)。BPE(BytePairEncoding,字节对编码)是一种数据压缩算法,也被用于自然语言处理中的分词方法。它通过逐步将常见的字符或子词组合成更长的词元(tokens),从而有效地表示文本中的词汇。在自然语言处理中的BPE分词器的工作原理如下:初始化:首先,将所有词汇表中的单词分解为单个字符或符号。例
- 机器学习之线性代数
珠峰日记
AI理论与实践机器学习线性代数人工智能
文章目录一、引言:线性代数为何是AI的基石二、向量:AI世界的基本构建块(一)向量的定义(二)向量基础操作(三)重要概念三、矩阵:AI数据的强大容器(一)矩阵的定义(二)矩阵运算(三)矩阵特性(四)矩阵分解(五)Python示例(使用NumPy库)四、线性代数在AI中的应用(一)数据表示(二)降维:PCA(三)线性回归(四)计算机视觉(五)自然语言处理一、引言:线性代数为何是AI的基石在人工智能领
- 【NLP 39、激活函数 ⑤ Swish激活函数】
L_cl
NLP自然语言处理人工智能
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由GoogleBrain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积,通过引入平滑性和非单调性来提升模型性能。一、数学定义与变体1.基础形式Swish的标准表达式为:Swish(x)=x⋅σ(βx)其中:σ(x)是Sigm
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 领域大模型之微调技术和最佳实践
程序员莫玛
人工智能深度学习语言模型金融
BERT和GPT-3等语言模型针对语言任务进行了预训练。微调使它们适应特定领域,如营销、医疗保健、金融。在本指南中,您将了解LLM架构、微调过程以及如何为NLP任务微调自己的预训练模型。-介绍-大型语言模型(LLM)的特别之处可以概括为两个关键词——大型和通用。“大”是指它们训练的海量数据集及其参数的大小,即模型在训练过程中学习的记忆和知识;“通用”意味着他们具有广泛的语言任务能力。更明确地说,L
- AI 驱动的软件测试革命:从自动化到智能化的进阶之路
綦枫Maple
AI+软件测试人工智能自动化运维
引言:软件测试的智能化转型浪潮在数字化转型加速的今天,软件产品的迭代速度与复杂度呈指数级增长。传统软件测试依赖人工编写用例、执行测试的模式,已难以应对快速交付与高质量要求的双重挑战。人工智能技术的突破为测试领域注入了新动能,通过机器学习、深度学习、自然语言处理等技术,测试流程正从“被动验证”向“主动预防”演进。本文将深入探讨AI与软件测试的融合路径,结合技术原理、工具实践与行业趋势,为读者呈现一幅
- 向量数据库简介
openwin_top
python编程示例系列python编程示例系列二数据库
向量数据库(VectorDatabase)是一种专门用于存储和查询向量数据的数据库系统。向量数据库通常使用高效的向量索引技术,支持基于向量相似度的查询和检索,可以应用于图像搜索、自然语言处理、推荐系统、机器学习等领域。与传统的关系型数据库不同,向量数据库通常使用基于向量的数据模型,将向量作为数据的核心表示形式。向量数据库可以存储和处理大量的向量数据,支持高效的向量相似度计算和查询。常见的向量索引技
- 在LangChain中运行Replicate模型的实用指南
fgayif
langchain人工智能python
##技术背景介绍Replicate是一个平台,可以轻松调用各种预训练的AI模型。与传统的模型托管和调用相比,Replicate提供了简单的API接口,使开发者能够快速集成和使用强大的AI模型。本文将重点介绍如何在LangChain项目中集成和调用Replicate模型。##核心原理解析在集成Replicate模型之前,需要进行一些基础设置和安装工作。LangChain是一个用于自然语言处理的库,它
- 使用Activeloop Deep Lake构建深度学习数据仓库与向量存储
dgay_hua
深度学习人工智能python
技术背景介绍随着深度学习技术的发展,数据的存储与管理成为了一个重要的问题。尤其是对于需要处理大量数据的应用,例如自然语言处理和图像识别,传统的数据存储方式已经无法满足需求。ActiveloopDeepLake是专为深度学习设计的数据仓库,可以作为向量存储使用,支持多模态数据的存储和处理,并且可以直接用于细调大型语言模型(LLMs)。此外,它还提供自动版本控制,无需依赖其他服务,兼容主要云服务提供商
- 使用CharacterTextSplitter进行文本分割的实战指南
bBADAS
python
在处理长文本时,将其切割成较小的片段是常见的需求,尤其是在自然语言处理任务中。CharacterTextSplitter是一个强大的工具,用于通过字符分隔符对文本进行分割,本文将深入介绍如何使用它进行文本处理。技术背景介绍当面对一份冗长的文本时,比如总统演讲稿、法律文档等,我们常常需要将其拆分成便于处理的小段。CharacterTextSplitter正是为此而生的一个轻量级工具,专门用于基于特定
- 大语言模型原理基础与前沿 挑战与机遇
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿挑战与机遇1.背景介绍大语言模型(LargeLanguageModels,LLMs)是近年来人工智能领域的一个重要突破。它们通过深度学习技术,特别是基于变换器(Transformer)架构的模型,能够在自然语言处理(NLP)任务中表现出色。大语言模型的出现不仅推动了学术研究的发展,也在实际应用中展现了巨大的潜力。1.1大语言模型的起源大语言模型的起源可以追溯到早期的统计语言
- 快速入门OpenAI聊天模型的实战指南
shuoac
python
#快速入门OpenAI聊天模型的实战指南OpenAI的聊天模型在开发人工智能应用时至关重要。本文将详细介绍如何使用OpenAI的聊天模型进行开发,并提供可运行的代码示例。##技术背景介绍OpenAI提供了多种聊天模型,支持不同的输入类型和功能,如工具调用、结构化输出等。通过Azure平台,也可以访问OpenAI模型,适合需要云集成的场景。##核心原理解析聊天模型利用自然语言处理技术生成响应,支持不
- DeepSeek源码解析(2)
白鹭凡
deepseekai
Tensor(张量)的介绍在计算机科学和机器学习领域,“张量”(Tensor)是一个数学概念,它被用来表示多维数组。在大模型(如深度学习模型)中,张量扮演着核心角色,具体来说:数据表示:张量用于表示输入数据、模型参数和中间计算结果。例如,在图像处理中,一张图片可以被表示为一个三维张量(高度、宽度、颜色通道数),而在自然语言处理中,一段文本可以被编码为一系列词向量组成的二维张量(句子长度、词向量维度
- Google力作 | Infini-attention无限长序列处理Transformer
NLP分享汇
transformer深度学习
更多文章,请关注微信公众号:NLP分享汇原文链接:Google力作|Infini-attention无限长序列处理Transformerhttps://mp.weixin.qq.com/s?__biz=MzU1ODk1NDUzMw==&mid=2247485000&idx=1&sn=e44a7256bcb178df0d2cc9b33c6882a1&chksm=fc1fe702cb686e14b6c
- 第N4周:NLP中的文本嵌入
OreoCC
自然语言处理人工智能
本人往期文章可查阅:深度学习总结词嵌入是一种用于自然语言处理(NLP)的技术,用于将单词表示为数字,以便计算机可以处理它们。通俗的讲就是,一种把文本转为数值输入到计算机中的方法。之前文章中提到的将文本转换为字典序列、one-hot编码就是最早期的词嵌入方法。Embedding和EmbeddingBag则是PyTorch中的用来处理文本数据中词嵌入(wordembedding)的工具,它们将离散的词
- 打造RAG系统:四大向量数据库Milvus、Faiss、Elasticsearch、Chroma 全面对比与选型指南
橙子小哥的代码世界
数据库数据库milvusfaiss人工智能深度学习神经网络elasticsearch
在当今信息爆炸的时代,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)系统已成为自然语言处理(NLP)领域的重要工具。RAG系统通过结合生成模型和信息检索技术,能够在大规模数据中高效地获取相关信息,生成更为精准和有针对性的内容。而在构建RAG系统时,选择合适的向量数据库是确保系统性能和可扩展性的关键一步。本文将深入对比四大主流向量数据库——Milvus、Fai
- 利用大型语言模型进行市场分析与预测
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着信息技术的飞速发展,企业积累了海量的文本数据,例如社交媒体帖子、产品评论、新闻报道等。这些数据蕴藏着丰富的市场信息,可以帮助企业更好地了解消费者需求、预测市场趋势、优化营销策略。然而,传统的数据分析方法往往难以有效地处理和分析这些非结构化文本数据。近年来,随着自然语言处理(NLP)技术的进步,大型语言模型(LLMs)在文本分析领域展现出强大的能力,为市场分析与预测带来了新的机遇。L
- 大模型“瘦身”革命——模型压缩与加速
大模型应用场景
人工智能开源transformer自然语言处理ai大模型LLM
随着AI大模型(如GPT、BERT、DALL·E等)的崛起,它们在自然语言处理、图像生成等领域的表现令人惊叹。然而,大模型的参数量动辄数十亿甚至上千亿,带来了巨大的计算资源消耗和部署成本。如何在保持模型性能的同时,降低其计算和存储需求,成为了AI领域的热门话题。本文将深入探讨AI大模型的“瘦身”革命——模型压缩与加速技术,帮助开发者高效部署大模型。一、为什么需要模型压缩与加速?AI大模型(如GPT
- 大模型——Spring Boot 整合 Spring AI 实现项目接入ChatGPT
不二人生
大模型人工智能大模型
大模型——SpringBoot整合SpringAI实现项目接入ChatGPT随着人工智能技术的快速发展,越来越多的应用程序开始集成人工智能功能,以提供更智能、更个性化的体验。诸如ChatGPT等开放性大型语言模型的出现,使得自然语言处理和对话系统的开发变得更加容易和普及。这些技术已经在社交媒体、客户服务、教育等领域展现出巨大潜力,对于提升用户体验和提高工作效率至关重要。优势在之前,openai已经
- AI Agent: AI的下一个风口 从图形用户界面到自然语言的进化
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIAgent:AI的下一个风口从图形用户界面到自然语言的进化文章目录AIAgent:AI的下一个风口从图形用户界面到自然语言的进化1.背景介绍1.1人机交互的演变历程1.1.1命令行界面时代1.1.2图形用户界面时代1.1.3自然语言交互的兴起1.2AI技术的发展现状1.2.1机器学习和深度学习的突破1.2.2自然语言处理技术的进步1.2.3知识图谱和语义理解的发展1.3AIAgent的概念与意
- RoPE——Transformer 的旋转位置编码
机智的小神仙儿
深度学习大模型transformer深度学习人工智能
在自然语言处理领域,Transformer是现代深度学习模型的基础,而位置编码(PositionEmbedding)则是Transformer处理序列数据的关键模块之一。近年来,一种新型的位置编码方法RoPE(RotaryPositionEmbedding)得到了广泛关注。本文将全面解读RoPE的背景、原理、实现、优势及其应用场景,帮助读者深入理解这一方法。1.什么是RoPE?RoPE(Rotar
- 深入探讨如何在LangChain中将参数从一个步骤传递到下一个步骤:高级技巧与实际应用
m0_57781768
langchain
深入探讨如何在LangChain中将参数从一个步骤传递到下一个步骤:高级技巧与实际应用在现代软件开发中,特别是在复杂的自然语言处理(NLP)和人工智能应用中,数据的传递和处理是至关重要的。LangChainExpressionLanguage(LCEL)为开发者提供了一种强大的工具,能够有效地管理数据流,并确保任务链中的每一步都能顺利进行。在这些任务链中,开发者常常需要将数据从一个步骤无缝地传递到
- 如何成为LangChain项目的贡献者
eahba
langchaineasyui前端python
技术背景介绍LangChain是一个开源项目,致力于处理自然语言处理和生成任务。随着AI和机器学习领域的快速发展,LangChain项目的更新速度也很快。此项目欢迎社区的参与,无论是新功能、基础设施改进、文档提升还是Bug修复,都在积极寻求贡献。核心原则解析参与开源项目不仅能提升个人技能,还能为社区带来价值。对LangChain的贡献包括但不限于以下几个方面:文档改进:帮助改善项目文档,以便新人和
- 使用LangChain实现最新NLP研究成果
eahba
langchain自然语言处理人工智能python
近年来,自然语言处理(NLP)领域的研究取得了显著的进展,而LangChain通过实现这些最新的研究成果,为开发者和研究人员提供了强大的工具与服务。在本文中,我们将探讨一些被LangChain所引用的arXiv研究论文,并展示如何通过API调用和具体示例来实现这些前沿技术。技术背景介绍LangChain作为一个强大且灵活的开源工具,旨在简化大语言模型(LLMs)的开发与应用。通过对最新研究的集成,
- 【Transformer优化】Transformer的局限在哪?
T-I-M
transformer深度学习人工智能
自2017年Transformer横空出世以来,它几乎重写了自然语言处理的规则。但当我们在享受其惊人的并行计算能力和表征能力时,是否真正理解了它的局限性?本文将深入探讨在复杂度之外被忽视的五大核心缺陷,并试图在数学维度揭示其本质。一、全局注意力的"诅咒":从**O(n²)**到O(n³)的计算困境自注意力机制的数学表达式:Attention(Q,K,V)=softmax(QK⊤dk)V\text{
- AIGC技术研究与应用 ---- 下一代人工智能:新范式!新生产力!(2.1-大模型发展历程 之 背景与开端)
shiter
AI重制版】人工智能系统解决方案与技术架构人工智能AIGC深度学习
文章大纲按照目标不同,AI大模型可分为四类,多模态为未来方向NLP大模型CV大模型科学计算大模型多模态大模型2022年是大模型技术的拐点,前期技术铺垫奠定了基础生成式模型的开端VAE与GANVAEGAN参考文献与学习路径GPT系列模型解析前序文章模型进化券商研报陆奇演讲按照目标不同,AI大模型可分为四类,多模态为未来方向NLP大模型自然语言处理(NaturalLanguageProcessing,
- 基于Python的微博舆情分析与可视化系统【附源码】
AI博士小张
python数据分析数据库
基于Python的微博舆情分析与可视化系统摘要研究背景及意义一、数据流程总体架构二、详细处理流程与代码实现1.数据采集模块2.数据清洗与预处理3.情感分析与特征工程4.舆情分析模型5.可视化呈现三、性能优化要点摘要基于Python的微博舆情分析与可视化系统旨在利用大数据和自然语言处理技术,实时抓取、分析微博平台上的用户言论,并通过可视化手段揭示舆情的动态演变规律。系统采用Python技术栈,结合网
- 提高客户体验:人类计算在营销中的应用
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
人类计算与营销:开启个性化时代的未来人类计算与营销:开启个性化时代的未来关键词:人工智能、个性化营销、客户体验、数据驱动、客户关系管理摘要:本文探讨了人类计算在营销中的应用,包括语音识别、人脸识别、自然语言处理等技术,以及如何通过这些技术实现个性化营销、客户关系管理和用户体验优化。文章分析了当前技术的发展趋势和面临的挑战,并提出了未来发展的方向。引言随着人工智能技术的飞速发展,人类计算在各个领域中
- PyTorch:Python深度学习框架使用详解
零 度°
pythonpython深度学习pytorch
PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理领域。它由Facebook的AI研究团队开发,因其动态计算图、易用性以及与Python的紧密集成而受到开发者的青睐。PyTorch的主要特点动态计算图:PyTorch的计算图在运行时构建,使得模型的修改和调试更加灵活。自动微分:自动计算梯度,简化了机器学习模型的训练过程。丰富的API:提供了丰富的神经网络层、函数和损失函数。跨平
- 关于自然语言处理(三)深度学习中的文字序列数据的分词操作
MatrixSparse
大模型人工智能自然语言处理深度学习人工智能
深度学习中的文字序列数据二维文字序列在文字数据中,样本与样本之间的联系是语义的联系,语义的联系即是词与词之间、字与字之间的联系,因此在文字序列中每个样本是一个单词或一个字(对英文来说大部分时候是一个单词,偶尔也可以是更小的语言单位,如字母或半词),故而在中文文字数据中,一张二维表往往是一个句子或一段话,而单个样本则表示单词或字。此时,不能够打乱顺序的维度是vocab_size,它代表了一个句子/一
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio