隐私计算python实现Paillier同态加密

1.基本概念

        Paillier同态加密是一种公钥加密方案,具有同态加密的特性。它由Pascal Paillier于1999年提出。

        Paillier同态加密基于数论问题,其安全性基于大整数分解问题和离散对数问题的困难性。该方案可以用于保护隐私数据,同时支持在加密状态下对加密的数据进行运算。

        Paillier同态加密方案包含两个主要算法:加密算法和解密算法。其中,加密算法用于将明文加密为密文,解密算法用于将密文解密为明文。此外,该方案还包括一个密钥生成算法,用于生成加密和解密所需的公钥和私钥。

2.加解密过程

2.1密钥生成

1.随机选择两个长度相等的大素数p,q,并满足gcd(pq,(p-1)(q-1))=1,这里gcd表示最大公约数。

2.计算n=pq以及λ=lcm(p-1,q-1),这里lcm表示最小公倍数

3.随机选择整数g(也可以令g=n+1)

4.定义L函数:L(x)=(x-1)/n,计算 

公钥pk=(n,g),私钥sk=(λ,μ)

2.2加密

1.输入明文信息m

2.选择随机整数r,且gcd(r,n)=1

3.计算密文

2.3解密

1.输入密文c

2.计算明文m=L(c^\lambda~mod~n^2)\cdot\mu~mod~n

2.4同态加证明

\begin{array}{l}{​{E(m_{1})\times E(m_{2})}}{​{=\left(g^{m_{1}}r_{1}{}^{N}(m o d N^{2})\right)\times\left(g^{m_{2}}r_{2}{}^{N}(m o d N^{2})\right)}}{​{=g^{m_{1}+m_{2}}(r_{1}\times r_{2})^{N}(m o d N^{2})}}{​{=E(m_{1}+m_{2})}}\end{array}

3.加解密示例

3.1密钥生成

1.这里我们p、q选取简单的素数,即p=17,q=23

2.计算n=pq=391,λ=lcm(16,22)=176

3.取整数g=n+1=392

4.计算\mu=(L(392^{176}~mod~ 391^2))^{-1}~mod~391=20

公钥pk=(n,g)=(391,392),私钥sk=(176,20)

3.2加密

1.明文m=8

2.选择随机数r=5,gcd(5,391)=1

3.计算密文

3.3解密

1.输入密文15310

2.计算明文m=L(15310^{176}~mod~391^2)\cdot20~mod~391=8

4.代码实现

"""
@Time : 2023/10/8 0008 16:17
@Auth : yeqc
"""
# 部分同态加密: paillier同态加密

from phe import paillier

# 创建Paillier 密钥对
public_key, private_key = paillier.generate_paillier_keypair()

# # 明文
# M = 42
# # 加密明文
# encrypted_M = public_key.encrypt(M)
#
# # 解密密文
# decrypted_M = private_key.decrypt(encrypted_M)
#
# print(f'明文{M}')
# print(f'加密密文:{encrypted_M.ciphertext()}')#.ciphertext()实现纯文本输出
# print(f'解密密文:{decrypted_M}')

# ------------------以下是密文加 实现明文加-------------------
# 明文
M1, M2 = 25, 70
# 加密密文
encrypted_M1, encrypted_M2 = public_key.encrypt(M1), public_key.encrypt(M2)

# 密文相加
en_M_sum = encrypted_M1 + encrypted_M2
# 解密密文
de_M_sum = private_key.decrypt(en_M_sum)
print(f'M1 = {M1},M2 = {M2}')
print(f'M1加密密文 en_M1 = {encrypted_M1}, M2加密密文 en_M2 = {encrypted_M2}')
print(f'密文相加 en_M_sum = {en_M_sum}')
print(f'解密密文 de_M_sum = {de_M_sum}')

你可能感兴趣的:(隐私计算,同态加密,区块链,算法)