自制编程语言基于c语言实验记录之五:虚拟机

1.创建类与堆栈框架

1 )对象调用实例方法,也就是向一个对象发送消息 时,运行时系统会在对象所属类的方法集合中查找方法。
2 )类调用类方法,也就是向一个类发送消息时,运行时系统会在类的 meta-class 的 方法集合中查找方法。
自制编程语言基于c语言实验记录之五:虚拟机_第1张图片

1.1 buildCore


//编译核心模块
void buildCore(VM* vm) {

   //核心模块不需要名字,模块也允许名字为空
   ObjModule* coreModule = newObjModule(vm, NULL);

   //创建核心模块,录入到vm->allModules
   mapSet(vm, vm->allModules, CORE_MODULE, OBJ_TO_VALUE(coreModule));

   //创建object类并绑定方法
   vm->objectClass = defineClass(vm, coreModule, "object");
   PRIM_METHOD_BIND(vm->objectClass, "!", primObjectNot);
   PRIM_METHOD_BIND(vm->objectClass, "==(_)", primObjectEqual);
   PRIM_METHOD_BIND(vm->objectClass, "!=(_)", primObjectNotEqual);
   PRIM_METHOD_BIND(vm->objectClass, "is(_)", primObjectIs);
   PRIM_METHOD_BIND(vm->objectClass, "toString", primObjectToString);
   PRIM_METHOD_BIND(vm->objectClass, "type", primObjectType);

   //定义classOfClass类,它是所有meta类的meta类和基类
   vm->classOfClass = defineClass(vm, coreModule, "class");

   //objectClass是任何类的基类 
   bindSuperClass(vm, vm->classOfClass, vm->objectClass);

   PRIM_METHOD_BIND(vm->classOfClass, "name", primClassName);
   PRIM_METHOD_BIND(vm->classOfClass, "supertype", primClassSupertype);
   PRIM_METHOD_BIND(vm->classOfClass, "toString", primClassToString);

   //定义object类的元信息类objectMetaclass,它无须挂载到vm
   Class* objectMetaclass = defineClass(vm, coreModule, "objectMeta");
   
   //classOfClass类是所有meta类的meta类和基类
   bindSuperClass(vm, objectMetaclass, vm->classOfClass);

   //类型比较
   PRIM_METHOD_BIND(objectMetaclass, "same(_,_)", primObjectmetaSame);

   //绑定各自的meta类
   vm->objectClass->objHeader.class = objectMetaclass;
   objectMetaclass->objHeader.class = vm->classOfClass;
   vm->classOfClass->objHeader.class = vm->classOfClass; //元信息类回路,meta类终点
}


//定义类
static Class* defineClass(VM* vm, ObjModule* objModule, const char* name) {
   //1先创建类
   Class* class = newRawClass(vm, name, 0);

   //2把类做为普通变量在模块中定义
   defineModuleVar(vm, objModule, name, strlen(name), OBJ_TO_VALUE(class));
   return class;
}

暂时忽略PRIM_METHOD_BIND

  1. defineClass创建object类保存于vm->objectClass
  2. defineClass创建object的metaClass,无需挂载到vm
  3. defineClass创建class类保存于vm->classOfClass
  4. object类的meta类设置为object的metaClass,即objHeader.class指向object的metaClass
  5. objectMetaclass类的meta类设置为class类
  6. class类的meta类设置为class类

2.newClass

//创建一个类
Class* newClass(VM* vm, ObjString* className, uint32_t fieldNum, Class* superClass) {
   //10表示strlen(" metaClass"
   #define MAX_METACLASS_LEN MAX_ID_LEN + 10
   char newClassName[MAX_METACLASS_LEN] = {'\0'};
   #undef MAX_METACLASS_LEN

   memcpy(newClassName, className->value.start, className->value.length);
   memcpy(newClassName + className->value.length, " metaclass", 10);

   //先创建子类的meta类
   Class* metaclass = newRawClass(vm, newClassName, 0);
   metaclass->objHeader.class = vm->classOfClass;

   pushTmpRoot(vm, (ObjHeader*)metaclass);
   //绑定classOfClass为meta类的基类
   //所有类的meta类的基类都是classOfClass
   bindSuperClass(vm, metaclass, vm->classOfClass);
   
   //最后再创建类
   memcpy(newClassName, className->value.start, className->value.length);
   newClassName[className->value.length] = '\0';
   Class* class = newRawClass(vm, newClassName, fieldNum);
   pushTmpRoot(vm, (ObjHeader*)class);

   class->objHeader.class = metaclass;
   bindSuperClass(vm, class, superClass);

   popTmpRoot(vm);   // metaclass
   popTmpRoot(vm);   // class
   
   return class;
}

//新建一个裸类
Class* newRawClass(VM* vm, const char* name, uint32_t fieldNum) {
   Class* class = ALLOCATE(vm, Class); 

   //裸类没有元类
   initObjHeader(vm, &class->objHeader, OT_CLASS, NULL);
   class->name = newObjString(vm, name, strlen(name));
   class->fieldNum = fieldNum;
   class->superClass = NULL;   //默认没有基类

   pushTmpRoot(vm, (ObjHeader*)class);
   MethodBufferInit(&class->methods);
   popTmpRoot(vm);

   return class;
}

传入参数要创建的类名className、实例域数量fieldNum、superClass。

  1. 根据传入className的利用newRawClass创建了Class、metaClass。
  2. metaclass的meta类、基类都设置为class类
  3. class的meta类设置为metaclass,基类设置为superClass

3.ensureStack

//确保stack有效
void ensureStack(VM* vm, ObjThread* objThread, uint32_t neededSlots) {
   if (objThread->stackCapacity >= neededSlots) {
      return;
   }

   uint32_t newStackCapacity = ceilToPowerOf2(neededSlots);
   ASSERT(newStackCapacity > objThread->stackCapacity, "newStackCapacity error!");

   //记录原栈底以用于下面判断扩容后的栈是否是原地扩容
   Value* oldStackBottom = objThread->stack;

   uint32_t slotSize = sizeof(Value);
   objThread->stack = (Value*)memManager(vm, objThread->stack,
	 objThread->stackCapacity * slotSize, newStackCapacity * slotSize);
   objThread->stackCapacity = newStackCapacity;

   //为判断是否原地扩容
   long offset = objThread->stack - oldStackBottom;

   //说明os无法在原地满足内存需求, 重新分配了起始地址,下面要调整
   if (offset != 0) {
      //调整各堆栈框架的地址  
      uint32_t idx = 0;
      while (idx < objThread->usedFrameNum) {
	 objThread->frames[idx++].stackStart += offset; 
      }
      
      //调整"open upValue"
      ObjUpvalue* upvalue = objThread->openUpvalues;
      while (upvalue != NULL) {
	 upvalue->localVarPtr += offset;
	 upvalue = upvalue->next; 
      }
   
      //更新栈顶
      objThread->esp += offset;
   }
}

大运行时栈空间单位为Value。
根据传入参数neededSlots即需要的栈空间重新给objThread->stack申请动态内存,动态内存管理器memManager返回的内存地址如果变了,则给objThread->frames[idx++].stackStart和objThread->openUpvalues->localVarPtr重新加上改变的偏移offset。

4.createFrame

//为objClosure在objThread中创建运行时栈
inline static void createFrame(VM* vm, ObjThread* objThread,
      ObjClosure* objClosure, int argNum) {

   if (objThread->usedFrameNum + 1 > objThread->frameCapacity) { //扩容
      uint32_t newCapacity = objThread->frameCapacity * 2; 
      uint32_t frameSize = sizeof(Frame);
      objThread->frames = (Frame*)memManager(vm, objThread->frames,
	    frameSize * objThread->frameCapacity, frameSize * newCapacity);
      objThread->frameCapacity = newCapacity;
   }
   
   //栈大小等于栈顶-栈底
   uint32_t stackSlots = (uint32_t)(objThread->esp - objThread->stack);
   //总共需要的栈大小
   uint32_t neededSlots = stackSlots + objClosure->fn->maxStackSlotUsedNum;

   ensureStack(vm, objThread, neededSlots);

   //准备上cpu
   prepareFrame(objThread, objClosure, objThread->esp - argNum);
}

//为运行函数准备桢栈
void prepareFrame(ObjThread* objThread, ObjClosure* objClosure, Value* stackStart) {
   ASSERT(objThread->frameCapacity > objThread->usedFrameNum, "frame not enough!!");   
   //objThread->usedFrameNum是最新可用的frame
   Frame* frame = &(objThread->frames[objThread->usedFrameNum++]);

   //thread中的各个frame是共享thread的stack 
   //frame用frame->stackStart指向各自frame在thread->stack中的起始地址
   frame->stackStart = stackStart;
   frame->closure = objClosure;
   frame->ip = objClosure->fn->instrStream.datas;
}

函数闭包objClosure作为线程objThread的参数,让线程来运行这个函数。objClosure->fn->instrStream.datas中保存了指令流。想要执行函数的指令流,需要线程来提供运行时栈,objThread->stack为线程的大栈,线程给每个函数分配一个框架objThread->frames,框架中包含一个从大栈分配出去的小栈来作为该函数的运行时栈,frame->stackStart为该函数栈的起始地址。
对于createFrame,每次想要给一个函数闭包创建一个框架,需要扩容线程框架数和线程大运行时栈栈空间:

  1. 先查看线程原来的框架数是否够用,不够则扩大一倍
  2. 根据当前大运行时栈的总空间和本函数闭包需要的栈空间objClosure->fn->maxStackSlotUsedNum来调用ensureStack重新扩容大运行时栈空间
  3. 以上两项扩容完毕后,objThread->usedFrameNum是最新可用的frame,调用prepareFrame使该frame的ip指向函数闭包指令流objClosure->fn->instrStream.datas,该frame的运行时栈指向大运行时栈中对应位置。

5.创建与关闭upvalue

函数的局部变量存在函数的frame指向的小运行时栈中,函数内部是可以定义函数的,如果内部函数引用了外部函数的局部变量被称为open upvalue,那么该内部函数对应的线程会保存upvalue队列(objThread->openUpvalues),其中每个upvalue的upvalue->localVarPtr指向外部函数运行时栈中的局部变量。
如果外部函数的生命周期结束了,内部函数还需要继续引用外部函数的局部变量,这时的局部变量被称为closed upvalue。在关闭本函数的upvalue的时候,会把upvalue被保存在upvalue->closedUpvalue,而upvalue->localVarPtr不再指向本函数运行时栈,而是指向upvalue->closedUpvalue

5.1 closeUpvalue、createOpenUpvalue


//关闭在栈中slot为lastSlot及之上的upvalue
static void closeUpvalue(ObjThread* objThread, Value* lastSlot) {
   ObjUpvalue* upvalue = objThread->openUpvalues;
   while (upvalue != NULL && upvalue->localVarPtr >= lastSlot) {
      //localVarPtr改指向本结构中的closedUpvalue
      upvalue->closedUpvalue = *(upvalue->localVarPtr);
      upvalue->localVarPtr = &(upvalue->closedUpvalue);

      upvalue = upvalue->next;
   }
   objThread->openUpvalues = upvalue;
}

//创建线程已打开的upvalue链表,并将localVarPtr所属的upvalue以降序插入到该链表
static ObjUpvalue* createOpenUpvalue(VM* vm, ObjThread* objThread, Value* localVarPtr) {
   //如果openUpvalues链表为空就创建
   if (objThread->openUpvalues == NULL) {
      objThread->openUpvalues = newObjUpvalue(vm, localVarPtr);
      return objThread->openUpvalues;
   }

   //下面以upvalue.localVarPtr降序组织openUpvalues
   ObjUpvalue* preUpvalue = NULL;
   ObjUpvalue* upvalue = objThread->openUpvalues;

   //后面的代码保证了openUpvalues按照降顺组织,
   //下面向堆栈的底部遍历,直到找到合适的插入位置
   while (upvalue != NULL && upvalue->localVarPtr > localVarPtr) {
      preUpvalue = upvalue; 
      upvalue = upvalue->next;
   }

   //如果之前已经插入了该upvalue则返回
   if (upvalue != NULL && upvalue->localVarPtr == localVarPtr) {
      return upvalue;
   }

   //openUpvalues中未找到该upvalue,
   //现在就创建新upvalue,按照降序插入到链表
   ObjUpvalue* newUpvalue = newObjUpvalue(vm, localVarPtr);

   //保证了openUpvalues首结点upvalue->localVarPtr的值是最高的
   if (preUpvalue == NULL) {
      //说明上面while的循环体未执行,新结点(形参localVarPtr)的值大于等于链表首结点
      //因此使链表结点指向它所在的新upvalue结点
      objThread->openUpvalues = newUpvalue; 
   } else {
      //preUpvalue已处于正确的位置
      preUpvalue->next = newUpvalue;
   }
   newUpvalue->next = upvalue;

   return newUpvalue;//返回该结点
}

createOpenUpvalue就是选择排序算法。从大到小排序
作用是在传入参数线程objThread的upvalue链表objThread->openUpvalues中,将传入的value创建为upvalue,并按从大到小顺序插入该链表,最后返回创建的upvalue结点

6.运行虚拟机

6.1 runFile

//执行脚本文件
static void runFile(const char* path) {
   const char* lastSlash = strrchr(path, '/');
   if (lastSlash != NULL) {
      char* root = (char*)malloc(lastSlash - path + 2);
      memcpy(root, path, lastSlash - path + 1);
      root[lastSlash - path + 1] = '\0';
      rootDir = root;
   }

   VM* vm = newVM();
   const char* sourceCode = readFile(path);
   executeModule(vm, OBJ_TO_VALUE(newObjString(vm, path, strlen(path))), sourceCode);
   freeVM(vm);
}

脚本执行函数顺序梳理:
runFile(读取脚本源码)-> executeModule -> loadModule(返回创建新线程) -> compileModule(返回编译后的模块cu->fn) -> 循环执行compileProgram编译每一句代码。-> executeInstruction(执行线程框架的闭包中的指令流fn)

6.2 executeModule

//执行模块
VMResult executeModule(VM* vm, Value moduleName, const char* moduleCode) {
   ObjThread* objThread = loadModule(vm, moduleName, moduleCode);
   return executeInstruction(vm, objThread);
}

6.3 loadModule、getModule

//载入模块moduleName并编译
static ObjThread* loadModule(VM* vm, Value moduleName, const char* moduleCode) {
   //确保模块已经载入到 vm->allModules
   //先查看是否已经导入了该模块,避免重新导入
   ObjModule* module = getModule(vm, moduleName);

   //若该模块未加载先将其载入,并继承核心模块中的变量
   if (module == NULL) {
      //创建模块并添加到vm->allModules
      ObjString* modName = VALUE_TO_OBJSTR(moduleName);
      ASSERT(modName->value.start[modName->value.length] == '\0', "string.value.start is not terminated!");

      module = newObjModule(vm, modName->value.start);

      pushTmpRoot(vm, (ObjHeader*)module);
      mapSet(vm, vm->allModules, moduleName, OBJ_TO_VALUE(module));
      popTmpRoot(vm);
      
      //继承核心模块中的变量
      ObjModule* coreModule = getModule(vm, CORE_MODULE);
      uint32_t idx = 0;
      while (idx < coreModule->moduleVarName.count) {
	 defineModuleVar(vm, module,
	       coreModule->moduleVarName.datas[idx].str,
	       strlen(coreModule->moduleVarName.datas[idx].str),
	       coreModule->moduleVarValue.datas[idx]);
	 idx++; 
      }
   }

   ObjFn* fn = compileModule(vm, module, moduleCode);
   pushTmpRoot(vm, (ObjHeader*)fn);
   ObjClosure* objClosure = newObjClosure(vm, fn);
   pushTmpRoot(vm, (ObjHeader*)objClosure);
   ObjThread* moduleThread = newObjThread(vm, objClosure);
   popTmpRoot(vm); // objClosure
   popTmpRoot(vm); // fn

   return moduleThread;  
}

//从modules中获取名为moduleName的模块
static ObjModule* getModule(VM* vm, Value moduleName) {
   Value value = mapGet(vm->allModules, moduleName);
   if (value.type == VT_UNDEFINED) {
      return NULL;
   }
   return (ObjModule*)(value.objHeader);
}

//新建线程
ObjThread* newObjThread(VM* vm, ObjClosure* objClosure) {
   ASSERT(objClosure != NULL, "objClosure is NULL!");

   Frame* frames = ALLOCATE_ARRAY(vm, Frame, INITIAL_FRAME_NUM);

   //加1是为接收者的slot
   uint32_t stackCapacity = ceilToPowerOf2(objClosure->fn->maxStackSlotUsedNum + 1);  
   Value* newStack = ALLOCATE_ARRAY(vm, Value, stackCapacity); 

   ObjThread* objThread = ALLOCATE(vm, ObjThread);
   initObjHeader(vm, &objThread->objHeader, OT_THREAD, vm->threadClass);

   objThread->frames = frames;
   objThread->frameCapacity = INITIAL_FRAME_NUM;
   objThread->stack = newStack;
   objThread->stackCapacity = stackCapacity;

   resetThread(objThread, objClosure);
   return objThread;
}
//重置thread
void resetThread(ObjThread* objThread, ObjClosure* objClosure) {
   objThread->esp = objThread->stack;  
   objThread->openUpvalues = NULL;
   objThread->caller = NULL;
   objThread->errorObj = VT_TO_VALUE(VT_NULL);
   objThread->usedFrameNum = 0;

   ASSERT(objClosure != NULL, "objClosure is NULL in function resetThread");
   prepareFrame(objThread, objClosure, objThread->stack);
}
  1. 调用loadModule有两种情况,一种是runfile运行脚本文件,该脚本文件是一个模块,所以需要加载该模块,也就是继续编译该模块里的程序;第二种是识别到关键字import,从而调用编译模块。
  2. 编译完模块后得到模块的指令流fn,申请新函数闭包objClosure保存fn,再申请新线程newObjThread保存该函数闭包objClosure。
  3. 新线程的初始框架数为默认框架数,同时上述的闭包是该新线程的第一个函数闭包,所以直接prepareFrame。待调用executeInstruction中的LOAD_CUR_FRAME后就可直接执行该函数闭包的指令流。

6.4 compileModule

//编译模块
ObjFn* compileModule(VM* vm, ObjModule* objModule, const char* moduleCode) {
   //各源码模块文件需要单独的parser
   Parser parser;
   parser.parent = vm->curParser;
   vm->curParser = &parser;

   if (objModule->name == NULL) {
      // 核心模块是core.script.inc
      initParser(vm, &parser, "core.script.inc", moduleCode, objModule);
   } else {
      initParser(vm, &parser, 
	    (const char*)objModule->name->value.start, moduleCode, objModule);
   }

   CompileUnit moduleCU;
   initCompileUnit(&parser, &moduleCU, NULL, false);

   //记录现在模块变量的数量,后面检查预定义模块变量时可减少遍历
   uint32_t moduleVarNumBefor = objModule->moduleVarValue.count;

   //初始的parser->curToken.type为TOKEN_UNKNOWN,下面使其指向第一个合法的token
   getNextToken(&parser);

   //编译模块
   while (!matchToken(&parser, TOKEN_EOF)) {
      compileProgram(&moduleCU);
   }

   //模块编译完成,生成return null返回,避免执行下面endCompileUnit中添加的OPCODE_END
   writeOpCode(&moduleCU, OPCODE_PUSH_NULL);  
   writeOpCode(&moduleCU, OPCODE_RETURN);  
   
   //检查在函数id中用行号声明的模块变量是否在引用之后有定义
   uint32_t idx = moduleVarNumBefor;
   while (idx < objModule->moduleVarValue.count) {
      //为简单起见,依然是遇到第一个错后就报错退出,后面的不再检查
      if (VALUE_IS_NUM(objModule->moduleVarValue.datas[idx])) {
	 char* str = objModule->moduleVarName.datas[idx].str;
	 ASSERT(str[objModule->moduleVarName.datas[idx].length] == '\0',
	       "module var name is not closed!");
	 uint32_t lineNo = VALUE_TO_NUM(objModule->moduleVarValue.datas[idx]);
	 COMPILE_ERROR(&parser, "line:%d, variable \'%s\' not defined!", lineNo, str);
      } 
      idx++;
   }

   //模块编译完成,当前编译单元置空
   vm->curParser->curCompileUnit = NULL;
   vm->curParser = vm->curParser->parent;
#if DEBUG
   return endCompileUnit(&moduleCU, "(script)", 8); 
#else
   return endCompileUnit(&moduleCU);
#endif
}

void initParser(VM* vm, Parser* parser, const char* file, 
      const char* sourceCode, ObjModule* objModule) {
   parser->file = file;
   parser->sourceCode = sourceCode;
   parser->curChar = *parser->sourceCode;
   parser->nextCharPtr = parser->sourceCode + 1;
   parser->curToken.lineNo = 1;
   parser->curToken.type = TOKEN_UNKNOWN;
   parser->curToken.start = NULL;
   parser->curToken.length = 0;
   parser->preToken = parser->curToken;
   parser->interpolationExpectRightParenNum = 0;
   parser->vm = vm;
   parser->curModule = objModule;
}

内部创建模块CU,接收了loadModule传入的objModule,编译模块生成指令流保存于cu->fn后,模块变量保存于objModule。initParser将objModule保存parser->curModule,initCompileUnit将parser保存于模块cu->curParser,endCompileUnit返回编译后的cu->fn,虽然endCompileUnit会在栈顶生成函数闭包,但是这里没有用栈顶的函数闭包,因为模块CU已经是最外层作用域,不存在upvalue。所以loadMoudle直接创建了新闭包。

6.5 compileProgram

//编译程序
static void compileProgram(CompileUnit* cu) {
   if (matchToken(cu->curParser, TOKEN_CLASS)) {
      compileClassDefinition(cu);
   } else if (matchToken(cu->curParser, TOKEN_FUN)) {
      compileFunctionDefinition(cu);
   } else if (matchToken(cu->curParser, TOKEN_VAR)) {
      compileVarDefinition(cu, cu->curParser->preToken.type == TOKEN_STATIC); 
   } else if (matchToken(cu->curParser, TOKEN_IMPORT)) {
      compileImport(cu);
   } else {
      compileStatment(cu);
   }
}

6.6 executeInstruction

//执行指令
VMResult executeInstruction(VM* vm, register ObjThread* curThread) {
   vm->curThread = curThread;   
   register Frame* curFrame;
   register Value* stackStart;
   register uint8_t* ip;
   register ObjFn* fn;
   OpCode opCode;

   //定义操作运行时栈的宏
   //esp是栈中下一个可写入数据的slot
   #define PUSH(value)  (*curThread->esp++ = value)   //压栈
   #define POP()        (*(--curThread->esp))   //出栈
   #define DROP()       (curThread->esp--)	
   #define PEEK()       (*(curThread->esp - 1))	// 获得栈顶的数据
   #define PEEK2()      (*(curThread->esp - 2))	// 获得次栈顶的数据
   
   //下面是读取指令流:objfn.instrStream.datas
   #define READ_BYTE()  (*ip++)   //从指令流中读取一字节
   //读取指令流中的2字节
   #define READ_SHORT() (ip += 2, (uint16_t)((ip[-2] << 8) | ip[-1]))

   //当前指令单元执行的进度就是在指令流中的指针,即ip,将其保存起来
   #define STORE_CUR_FRAME() curFrame->ip = ip   // 备份ip以能回到当前

   //加载最新的frame
   #define LOAD_CUR_FRAME()        \
      /* frames是数组,索引从0起,故usedFrameNum-1 */   \
      curFrame = &curThread->frames[curThread->usedFrameNum - 1]; \
      stackStart = curFrame->stackStart; \
      ip = curFrame->ip; \
      fn = curFrame->closure->fn;

   #define DECODE loopStart: \
      opCode = READ_BYTE();\
      switch (opCode)

   #define CASE(shortOpCode) case OPCODE_##shortOpCode
   #define LOOP() goto loopStart

   LOAD_CUR_FRAME();
   DECODE {
      //若OPCODE依赖于指令环境(栈和指令流),会在各OPCODE下说明

      CASE(LOAD_LOCAL_VAR):
	  ......
	  ......
	  LOOP();
	  CASE(xxx)
	  ...
	}
}

方法调用会切换框架执行框架对应的函数闭包,采用的就是

case MT_SCRIPT:
	       STORE_CUR_FRAME();
	       createFrame(vm, curThread, (ObjClosure*)method->obj, argNum);
	       LOAD_CUR_FRAME();   //加载最新的frame
	       break;

显然,在curThread-frames中,新框架就是老框架的下一个。

你可能感兴趣的:(c语言,编辑器)