c语言-彻底理解C语言指针的概念

计算机中所有的数据都必须放在内存中,不同类型的数据占用的字节数不一样,例如 int 占用 4 个字节,char 占用 1 个字节。为了正确地访问这些数据,必须为每个字节都编上号码,就像门牌号、身份证号一样,每个字节的编号是唯一的,根据编号可以准确地找到某个字节。

下图是 4G 内存中每个字节的编号(以十六进制表示):



我们将内存中字节的编号称为地址(Address)或指针(Pointer)。地址从 0 开始依次增加,对于 32 位环境,程序能够使用的内存为 4GB,最小的地址为 0,最大的地址为 0XFFFFFFFF。

下面的代码演示了如何输出一个地址:

 
  
  1. #include
  2. int main(){
  3. int a = 100;
  4. char str[20] = "c.biancheng.net";
  5. printf("%#X, %#X\n", &a, str);
  6. return 0;
  7. }

运行结果:
0X28FF3C, 0X28FF10

%#X表示以十六进制形式输出,并附带前缀0X。a 是一个变量,用来存放整数,需要在前面加&来获得它的地址;str 本身就表示字符串的首地址,不需要加&

C语言中有一个控制符 %p,专门用来以十六进制形式输出地址,不过 %p 的输出格式并不统一,有的编译器带 0x前缀,有的不带,所以此处我们并没有采用。

一切都是地址

C语言用变量来存储数据,用函数来定义一段可以重复使用的代码,它们最终都要放到内存中才能供 CPU 使用。

数据和代码都以二进制的形式存储在内存中,计算机无法从格式上区分某块内存到底存储的是数据还是代码。当程序被加载到内存后,操作系统会给不同的内存块指定不同的权限,拥有读取和执行权限的内存块就是代码,而拥有读取和写入权限(也可能只有读取权限)的内存块就是数据。

CPU 只能通过地址来取得内存中的代码和数据,程序在执行过程中会告知 CPU 要执行的代码以及要读写的数据的地址。如果程序不小心出错,或者开发者有意为之,在 CPU 要写入数据时给它一个代码区域的地址,就会发生内存访问错误。这种内存访问错误会被硬件和操作系统拦截,强制程序崩溃,程序员没有挽救的机会。

CPU 访问内存时需要的是地址,而不是变量名和函数名!变量名和函数名只是地址的一种助记符,当源文件被编译和链接成可执行程序后,它们都会被替换成地址。编译和链接过程的一项重要任务就是找到这些名称所对应的地址。

假设变量 a、b、c 在内存中的地址分别是 0X1000、0X2000、0X3000,那么加法运算c = a + b;将会被转换成类似下面的形式:

0X3000 = (0X1000) + (0X2000);

( )表示取值操作,整个表达式的意思是,取出地址 0X1000 和 0X2000 上的值,将它们相加,把相加的结果赋值给地址为 0X3000 的内存

变量名和函数名为我们提供了方便,让我们在编写代码的过程中可以使用易于阅读和理解的英文字符串,不用直接面对二进制地址,那场景简直让人崩溃。

需要注意的是,虽然变量名、函数名、字符串名和数组名在本质上是一样的,它们都是地址的助记符,但在编写代码的过程中,我们认为变量名表示的是数据本身,而函数名、字符串名和数组名表示的是代码块或数据块的首地址。

/*******************************************************

C语言指针变量的定义和使用

数据在内存中的地址也称为指针,如果一个变量存储了一份数据的指针,我们就称它为指针变量

在C语言中,允许用一个变量来存放指针,这种变量称为指针变量。指针变量的值就是某份数据的地址,这样的一份数据可以是数组、字符串、函数,也可以是另外的一个普通变量或指针变量。

现在假设有一个 char 类型的变量 c,它存储了字符 'K'(ASCII码为十进制数 75),并占用了地址为 0X11A 的内存(地址通常用十六进制表示)。另外有一个指针变量 p,它的值为 0X11A,正好等于变量 c 的地址,这种情况我们就称 p 指向了 c,或者说 p 是指向变量 c 的指针。

定义指针变量

定义指针变量与定义普通变量非常类似,不过要在变量名前面加星号*,格式为:

datatype *name;

或者

datatype *name = value;

*表示这是一个指针变量,datatype表示该指针变量所指向的数据的类型 。例如:

 
  
  1. int *p1;

p1 是一个指向 int 类型数据的指针变量,至于 p1 究竟指向哪一份数据,应该由赋予它的值决定。再如:

 
  
  1. int a = 100;
  2. int *p_a = &a;

在定义指针变量 p_a 的同时对它进行初始化,并将变量 a 的地址赋予它,此时 p_a 就指向了 a。值得注意的是,p_a 需要的一个地址,a 前面必须要加取地址符&,否则是不对的。

和普通变量一样,指针变量也可以被多次写入,只要你想,随时都能够改变指针变量的值,请看下面的代码:

 
  
  1. //定义普通变量
  2. float a = 99.5, b = 10.6;
  3. char c = '@', d = '#';
  4. //定义指针变量
  5. float *p1 = &a;
  6. char *p2 = &c;
  7. //修改指针变量的值
  8. p1 = &b;
  9. p2 = &d;

*是一个特殊符号,表明一个变量是指针变量,定义 p1、p2 时必须带*。而给 p1、p2 赋值时,因为已经知道了它是一个指针变量,就没必要多此一举再带上*,后边可以像使用普通变量一样来使用指针变量。也就是说,定义指针变量时必须带*,给指针变量赋值时不能带*

假设变量 a、b、c、d 的地址分别为 0X1000、0X1004、0X2000、0X2004,下面的示意图很好地反映了 p1、p2 指向的变化:

c语言-彻底理解C语言指针的概念_第1张图片

需要强调的是,p1、p2 的类型分别是float*char*,而不是floatchar,它们是完全不同的数据类型,读者要引起注意。

指针变量也可以连续定义,例如:

 
  
  1. int *a, *b, *c; //a、b、c 的类型都是 int*

注意每个变量前面都要带*。如果写成下面的形式,那么只有 a 是指针变量,b、c 都是类型为 int 的普通变量:

 
  
  1. int *a, b, c;

通过指针变量取得数据

指针变量存储了数据的地址,通过指针变量能够获得该地址上的数据,格式为:

*pointer;

这里的*称为指针运算符,用来取得某个地址上的数据,请看下面的例子:

 
  
  1. #include
  2. int main(){
  3. int a = 15;
  4. int *p = &a;
  5. printf("%d, %d\n", a, *p); //两种方式都可以输出a的值
  6. return 0;
  7. }

运行结果:
15, 15

假设 a 的地址是 0X1000,p 指向 a 后,p 本身的值也会变为 0X1000,*p 表示获取地址 0X1000 上的数据,也即变量 a 的值。从运行结果看,*p 和 a 是等价的。

上节我们说过,CPU 读写数据必须要知道数据在内存中的地址,普通变量和指针变量都是地址的助记符,虽然通过 *p 和 a 获取到的数据一样,但它们的运行过程稍有不同:a 只需要一次运算就能够取得数据,而 *p 要经过两次运算,多了一层“间接”。

假设变量 a、p 的地址分别为 0X1000、0XF0A0,它们的指向关系如下图所示:

c语言-彻底理解C语言指针的概念_第2张图片

程序被编译和链接后,a、p 被替换成相应的地址。使用 *p 的话,要先通过地址 0XF0A0 取得变量 p 本身的值,这个值是变量 a 的地址,然后再通过这个值取得变量 a 的数据,前后共有两次运算;而使用 a 的话,可以通过地址 0X1000 直接取得它的数据,只需要一步运算。

也就是说,使用指针是间接获取数据,使用变量名是直接获取数据,前者比后者的代价要高。

指针除了可以获取内存上的数据,也可以修改内存上的数据,例如:

 
  
  1. #include
  2. int main(){
  3. int a = 15, b = 99, c = 222;
  4. int *p = &a; //定义指针变量
  5. *p = b; //通过指针变量修改内存上的数据
  6. c = *p; //通过指针变量获取内存上的数据
  7. printf("%d, %d, %d, %d\n", a, b, c, *p);
  8. return 0;
  9. }

运行结果:
99, 99, 99, 99

*p 代表的是 a 中的数据,它等价于 a,可以将另外的一份数据赋值给它,也可以将它赋值给另外的一个变量。

*在不同的场景下有不同的作用:*可以用在指针变量的定义中,表明这是一个指针变量,以和普通变量区分开;使用指针变量时在前面加*表示获取指针指向的数据,或者说表示的是指针指向的数据本身。

也就是说,定义指针变量时的*和使用指针变量时的*意义完全不同。以下面的语句为例:

 
  
  1. int *p = &a;
  2. *p = 100;

第1行代码中*用来指明 p 是一个指针变量,第2行代码中*用来获取指针指向的数据。

需要注意的是,给指针变量本身赋值时不能加*。修改上面的语句:

 
  
  1. int *p;
  2. p = &a;
  3. *p = 100;

第2行代码中的 p 前面就不能加*

指针变量也可以出现在普通变量能出现的任何表达式中,例如:

 
  
  1. int x, y, *px = &x, *py = &y;
  2. y = *px + 5; //表示把x的内容加5并赋给y,*px+5相当于(*px)+5
  3. y = ++*px; //px的内容加上1之后赋给y,++*px相当于++(*px)
  4. y = *px++; //相当于y=*(px++)
  5. py = px; //把一个指针的值赋给另一个指针


【示例】通过指针交换两个变量的值。

 
  
  1. #include
  2. int main(){
  3. int a = 100, b = 999, temp;
  4. int *pa = &a, *pb = &b;
  5. printf("a=%d, b=%d\n", a, b);
  6. /*****开始交换*****/
  7. temp = *pa; //将a的值先保存起来
  8. *pa = *pb; //将b的值交给a
  9. *pb = temp; //再将保存起来的a的值交给b
  10. /*****结束交换*****/
  11. printf("a=%d, b=%d\n", a, b);
  12. return 0;
  13. }

运行结果:
a=100, b=999
a=999, b=100

从运行结果可以看出,a、b 的值已经发生了交换。需要注意的是临时变量 temp,它的作用特别重要,因为执行*pa = *pb;语句后 a 的值会被 b 的值覆盖,如果不先将 a 的值保存起来以后就找不到了。

关于 * 和 & 的谜题

假设有一个 int 类型的变量 a,pa 是指向它的指针,那么*&a&*pa分别是什么意思呢?

*&a可以理解为*(&a)&a表示取变量 a 的地址(等价于 pa),*(&a)表示取这个地址上的数据(等价于 *pa),绕来绕去,又回到了原点,*&a仍然等价于 a。

&*pa可以理解为&(*pa)*pa表示取得 pa 指向的数据(等价于 a),&(*pa)表示数据的地址(等价于 &a),所以&*pa等价于 pa。

对星号*的总结

在我们目前所学到的语法中,星号*主要有三种用途:

  • 表示乘法,例如int a = 3, b = 5, c;  c = a * b;,这是最容易理解的。
  • 表示定义一个指针变量,以和普通变量区分开,例如int a = 100;  int *p = &a;
  • 表示获取指针指向的数据,是一种间接操作,例如int a, b, *p = &a;  *p = 100;  b = *p;

 /***************************************************************

C语言数组指针指向数组的指针

数组(Array)是一系列具有相同类型的数据的集合,每一份数据叫做一个数组元素(Element)。数组中的所有元素在内存中是连续排列的,整个数组占用的是一块内存。以int arr[] = { 99, 15, 100, 888, 252 };为例,该数组在内存中的分布如下图所示:

定义数组时,要给出数组名和数组长度,数组名可以认为是一个指针,它指向数组的第 0 个元素。在C语言中,我们将第 0 个元素的地址称为数组的首地址。以上面的数组为例,下图是 arr 的指向:

数组名的本意是表示整个数组,也就是表示多份数据的集合,但在使用过程中经常会转换为指向数组第 0 个元素的指针,所以上面使用了“认为”一词,表示数组名和数组首地址并不总是等价。初学者可以暂时忽略这个细节,把数组名当做指向第 0 个元素的指针使用即可,我们将在VIP教程《 数组和指针绝不等价,数组是另外一种类型》和《 数组到底在什么时候会转换为指针》中再深入讨论这一细节。

下面的例子演示了如何以指针的方式遍历数组元素:

 
  
  1. #include
  2. int main(){
  3. int arr[] = { 99, 15, 100, 888, 252 };
  4. int len = sizeof(arr) / sizeof(int); //求数组长度
  5. int i;
  6. for(i=0; i
  7. printf("%d ", *(arr+i) ); //*(arr+i)等价于arr[i]
  8. }
  9. printf("\n");
  10. return 0;
  11. }

运行结果:
99  15  100  888  252

第 5 行代码用来求数组的长度,sizeof(arr) 会获得整个数组所占用的字节数,sizeof(int) 会获得一个数组元素所占用的字节数,它们相除的结果就是数组包含的元素个数,也即数组长度。

第 8 行代码中我们使用了*(arr+i)这个表达式,arr 是数组名,指向数组的第 0 个元素,表示数组首地址, arr+i 指向数组的第 i 个元素,*(arr+i) 表示取第 i 个元素的数据,它等价于 arr[i]。

arr 是 int*类型的指针,每次加 1 时它自身的值会增加 sizeof(int),加 i 时自身的值会增加 sizeof(int) * i,这在《 C语言指针变量的运算》中已经进行了详细讲解。

我们也可以定义一个指向数组的指针,例如:

 
  
  1. int arr[] = { 99, 15, 100, 888, 252 };
  2. int *p = arr;

arr 本身就是一个指针,可以直接赋值给指针变量 p。arr 是数组第 0 个元素的地址,所以int *p = arr;也可以写作int *p = &arr[0];。也就是说,arr、p、&arr[0] 这三种写法都是等价的,它们都指向数组第 0 个元素,或者说指向数组的开头。

再强调一遍,“arr 本身就是一个指针”这种表述并不准确,严格来说应该是“arr 被转换成了一个指针”。这里请大家先忽略这个细节,我们将在VIP教程《 数组和指针绝不等价,数组是另外一种类型》和《 数组到底在什么时候会转换为指针》中深入讨论。

如果一个指针指向了数组,我们就称它为数组指针(Array Pointer)。

数组指针指向的是数组中的一个具体元素,而不是整个数组,所以数组指针的类型和数组元素的类型有关,上面的例子中,p 指向的数组元素是 int 类型,所以 p 的类型必须也是int *

反过来想,p 并不知道它指向的是一个数组,p 只知道它指向的是一个整数,究竟如何使用 p 取决于程序员的编码。

更改上面的代码,使用数组指针来遍历数组元素:

 
  
  1. #include
  2. int main(){
  3. int arr[] = { 99, 15, 100, 888, 252 };
  4. int i, *p = arr, len = sizeof(arr) / sizeof(int);
  5. for(i=0; i
  6. printf("%d ", *(p+i) );
  7. }
  8. printf("\n");
  9. return 0;
  10. }

数组在内存中只是数组元素的简单排列,没有开始和结束标志,在求数组的长度时不能使用sizeof(p) / sizeof(int),因为 p 只是一个指向 int 类型的指针,编译器并不知道它指向的到底是一个整数还是一系列整数(数组),所以 sizeof(p) 求得的是 p 这个指针变量本身所占用的字节数,而不是整个数组占用的字节数。

也就是说,根据数组指针不能逆推出整个数组元素的个数,以及数组从哪里开始、到哪里结束等信息。不像字符串,数组本身也没有特定的结束标志,如果不知道数组的长度,那么就无法遍历整个数组。

上节我们讲到,对指针变量进行加法和减法运算时,是根据数据类型的长度来计算的。如果一个指针变量 p 指向了数组的开头,那么 p+i 就指向数组的第 i 个元素;如果 p 指向了数组的第 n 个元素,那么 p+i 就是指向第 n+i 个元素;而不管 p 指向了数组的第几个元素,p+1 总是指向下一个元素,p-1 也总是指向上一个元素。

更改上面的代码,让 p 指向数组中的第二个元素:

 
  
  1. #include
  2. int main(){
  3. int arr[] = { 99, 15, 100, 888, 252 };
  4. int *p = &arr[2]; //也可以写作 int *p = arr + 2;
  5. printf("%d, %d, %d, %d, %d\n", *(p-2), *(p-1), *p, *(p+1), *(p+2) );
  6. return 0;
  7. }

运行结果:
99, 15, 100, 888, 252

引入数组指针后,我们就有两种方案来访问数组元素了,一种是使用下标,另外一种是使用指针。

1) 使用下标

也就是采用 arr[i] 的形式访问数组元素。如果 p 是指向数组 arr 的指针,那么也可以使用 p[i] 来访问数组元素,它等价于 arr[i]。

2) 使用指针

也就是使用 *(p+i) 的形式访问数组元素。另外数组名本身也是指针,也可以使用 *(arr+i) 来访问数组元素,它等价于 *(p+i)。

不管是数组名还是数组指针,都可以使用上面的两种方式来访问数组元素。不同的是,数组名是常量,它的值不能改变,而数组指针是变量(除非特别指明它是常量),它的值可以任意改变。也就是说,数组名只能指向数组的开头,而数组指针可以先指向数组开头,再指向其他元素。

更改上面的代码,借助自增运算符来遍历数组元素:

 
  
  1. #include
  2. int main(){
  3. int arr[] = { 99, 15, 100, 888, 252 };
  4. int i, *p = arr, len = sizeof(arr) / sizeof(int);
  5. for(i=0; i
  6. printf("%d ", *p++ );
  7. }
  8. printf("\n");
  9. return 0;
  10. }

运行结果:
99  15  100  888  252

第 8 行代码中,*p++ 应该理解为 *(p++),每次循环都会改变 p 的值(p++ 使得 p 自身的值增加),以使 p 指向下一个数组元素。该语句不能写为 *arr++,因为 arr 是常量,而 arr++ 会改变它的值,这显然是错误的。

关于数组指针的谜题

假设 p 是指向数组 arr 中第 n 个元素的指针,那么 *p++、*++p、(*p)++ 分别是什么意思呢?

*p++ 等价于 *(p++),表示先取得第 n 个元素的值,再将 p 指向下一个元素,上面已经进行了详细讲解。

*++p 等价于 *(++p),会先进行 ++p 运算,使得 p 的值增加,指向下一个元素,整体上相当于 *(p+1),所以会获得第 n+1 个数组元素的值。

(*p)++ 就非常简单了,会先取得第 n 个元素的值,再对该元素的值加 1。假设 p 指向第 0  个元素,并且第 0 个元素的值为 99,执行完该语句后,第 0  个元素的值就会变为 100。

/********************************************************************

C语言指针变量作为函数参数

在C语言中,函数的参数不仅可以是整数、小数、字符等具体的数据,还可以是指向它们的指针。用指针变量作函数参数可以将函数外部的地址传递到函数内部,使得在函数内部可以操作函数外部的数据,并且这些数据不会随着函数的结束而被销毁。

像数组、字符串、动态分配的内存等都是一系列数据的集合,没有办法通过一个参数全部传入函数内部,只能传递它们的指针,在函数内部通过指针来影响这些数据集合。

有的时候,对于整数、小数、字符等基本类型数据的操作也必须要借助指针,一个典型的例子就是交换两个变量的值。

有些初学者可能会使用下面的方法来交换两个变量的值:

 
  
  1. #include
  2. void swap(int a, int b){
  3. int temp; //临时变量
  4. temp = a;
  5. a = b;
  6. b = temp;
  7. }
  8. int main(){
  9. int a = 66, b = 99;
  10. swap(a, b);
  11. printf("a = %d, b = %d\n", a, b);
  12. return 0;
  13. }

运行结果:
a = 66, b = 99

从结果可以看出,a、b 的值并没有发生改变,交换失败。这是因为 swap() 函数内部的 a、b 和 main() 函数内部的 a、b 是不同的变量,占用不同的内存,它们除了名字一样,没有其他任何关系,swap() 交换的是它内部 a、b 的值,不会影响它外部(main() 内部) a、b 的值。

改用指针变量作参数后就很容易解决上面的问题:

 
  
  1. #include
  2. void swap(int *p1, int *p2){
  3. int temp; //临时变量
  4. temp = *p1;
  5. *p1 = *p2;
  6. *p2 = temp;
  7. }
  8. int main(){
  9. int a = 66, b = 99;
  10. swap(&a, &b);
  11. printf("a = %d, b = %d\n", a, b);
  12. return 0;
  13. }

运行结果:
a = 99, b = 66

调用 swap() 函数时,将变量 a、b 的地址分别赋值给 p1、p2,这样 *p1、*p2 代表的就是变量 a、b 本身,交换 *p1、*p2 的值也就是交换 a、b 的值。函数运行结束后虽然会将 p1、p2 销毁,但它对外部 a、b 造成的影响是“持久化”的,不会随着函数的结束而“恢复原样”。

需要注意的是临时变量 temp,它的作用特别重要,因为执行*p1 = *p2;语句后 a 的值会被 b 的值覆盖,如果不先将 a 的值保存起来以后就找不到了。

/******************************************************************

C语言指针作为函数返回值

C语言允许函数的返回值是一个指针(地址),我们将这样的函数称为指针函数。下面的例子定义了一个函数 strlong(),用来返回两个字符串中较长的一个:

 
  
  1. #include
  2. #include
  3. char *strlong(char *str1, char *str2){
  4. if(strlen(str1) >= strlen(str2)){
  5. return str1;
  6. }else{
  7. return str2;
  8. }
  9. }
  10. int main(){
  11. char str1[30], str2[30], *str;
  12. gets(str1);
  13. gets(str2);
  14. str = strlong(str1, str2);
  15. printf("Longer string: %s\n", str);
  16. return 0;
  17. }

运行结果:

C Language↙
c.biancheng.net↙
Longer string: c.biancheng.net

用指针作为函数返回值时需要注意的一点是,函数运行结束后会销毁在它内部定义的所有局部数据,包括局部变量、局部数组和形式参数,函数返回的指针请尽量不要指向这些数据,C语言没有任何机制来保证这些数据会一直有效,它们在后续使用过程中可能会引发运行时错误。请看下面的例子:

 
  
  1. #include
  2. int *func(){
  3. int n = 100;
  4. return &n;
  5. }
  6. int main(){
  7. int *p = func(), n;
  8. n = *p;
  9. printf("value = %d\n", n);
  10. return 0;
  11. }

运行结果:

value = 100

n 是 func() 内部的局部变量,func() 返回了指向 n 的指针,根据上面的观点,func() 运行结束后 n 将被销毁,使用 *p 应该获取不到 n 的值。但是从运行结果来看,我们的推理好像是错误的,func() 运行结束后 *p 依然可以获取局部变量 n 的值,这个上面的观点不是相悖吗?

为了进一步看清问题的本质,不妨将上面的代码稍作修改,在第9~10行之间增加一个函数调用,看看会有什么效果:

 
  
  1. #include
  2. int *func(){
  3. int n = 100;
  4. return &n;
  5. }
  6. int main(){
  7. int *p = func(), n;
  8. printf("c.biancheng.net\n");
  9. n = *p;
  10. printf("value = %d\n", n);
  11. return 0;
  12. }

运行结果:

c.biancheng.net
value = -2

可以看到,现在 p 指向的数据已经不是原来 n 的值了,它变成了一个毫无意义的甚至有些怪异的值。与前面的代码相比,该段代码仅仅是在 *p 之前增加了一个函数调用,这一细节的不同却导致运行结果有天壤之别,究竟是为什么呢?

前面我们说函数运行结束后会销毁所有的局部数据,这个观点并没错,大部分C语言教材也都强调了这一点。但是,这里所谓的销毁并不是将局部数据所占用的内存全部抹掉,而是程序放弃对它的使用权限,弃之不理,后面的代码可以随意使用这块内存。对于上面的两个例子,func() 运行结束后 n 的内存依然保持原样,值还是 100,如果使用及时也能够得到正确的数据,如果有其它函数被调用就会覆盖这块内存,得到的数据就失去了意义。

关于函数调用的原理以及函数如何占用内存的更多细节,我们将在《 C语言内存精讲》专题中深入探讨,相信你必将有所顿悟,解开心中的谜团。

第一个例子在调用其他函数之前使用 *p 抢先获得了 n 的值并将它保存起来,第二个例子显然没有抓住机会,有其他函数被调用后才使用 *p 获取数据,这个时候已经晚了,内存已经被后来的函数覆盖了,而覆盖它的究竟是一份什么样的数据我们无从推断(一般是一个没有意义甚至有些怪异的值)。

/************************************************************

C语言二级指针(指向指针的指针)详解

指针可以指向一份普通类型的数据,例如 int、double、char 等,也可以指向一份指针类型的数据,例如 int *、double *、char * 等。

如果一个指针指向的是另外一个指针,我们就称它为二级指针,或者指向指针的指针。

假设有一个 int 类型的变量 a,p1是指向 a 的指针变量,p2 又是指向 p1 的指针变量,它们的关系如下图所示:



将这种关系转换为C语言代码:

 
  
  1. int a =100;
  2. int *p1 = &a;
  3. int **p2 = &p1;

指针变量也是一种变量,也会占用存储空间,也可以使用&获取它的地址。C语言不限制指针的级数,每增加一级指针,在定义指针变量时就得增加一个星号*。p1 是一级指针,指向普通类型的数据,定义时有一个*;p2 是二级指针,指向一级指针 p1,定义时有两个*

如果我们希望再定义一个三级指针 p3,让它指向 p2,那么可以这样写:

 
  
  1. int ***p3 = &p2;

四级指针也是类似的道理:

 
  
  1. int ****p4 = &p3;

实际开发中会经常使用一级指针和二级指针,几乎用不到高级指针。

想要获取指针指向的数据时,一级指针加一个*,二级指针加两个*,三级指针加三个*,以此类推,请看代码:

 
  
  1. #include
  2. int main(){
  3. int a =100;
  4. int *p1 = &a;
  5. int **p2 = &p1;
  6. int ***p3 = &p2;
  7. printf("%d, %d, %d, %d\n", a, *p1, **p2, ***p3);
  8. printf("&p2 = %#X, p3 = %#X\n", &p2, p3);
  9. printf("&p1 = %#X, p2 = %#X, *p3 = %#X\n", &p1, p2, *p3);
  10. printf(" &a = %#X, p1 = %#X, *p2 = %#X, **p3 = %#X\n", &a, p1, *p2, **p3);
  11. return 0;
  12. }

运行结果:

100, 100, 100, 100
&p2 = 0X28FF3C, p3 = 0X28FF3C
&p1 = 0X28FF40, p2 = 0X28FF40, *p3 = 0X28FF40
 &a = 0X28FF44, p1 = 0X28FF44, *p2 = 0X28FF44, **p3 = 0X28FF44

以三级指针 p3 为例来分析上面的代码。***p3等价于*(*(*p3))。*p3 得到的是 p2 的值,也即 p1 的地址;*(*p3) 得到的是 p1 的值,也即 a 的地址;经过三次“取值”操作后,*(*(*p3)) 得到的才是 a 的值。

假设 a、p1、p2、p3 的地址分别是 0X00A0、0X1000、0X2000、0X3000,它们之间的关系可以用下图来描述:



方框里面是变量本身的值,方框下面是变量的地址。

/***********************************************************

C语言函数指针(指向函数的指针)详解

一个函数总是占用一段连续的内存区域,函数名在表达式中有时也会被转换为该函数所在内存区域的首地址,这和数组名非常类似。我们可以把函数的这个首地址(或称入口地址)赋予一个指针变量,使指针变量指向函数所在的内存区域,然后通过指针变量就可以找到并调用该函数。这种指针就是函数指针。

函数指针的定义形式为:

returnType (*pointerName)(param list);

returnType 为函数返回值类型,pointerName 为指针名称,param list 为函数参数列表。参数列表中可以同时给出参数的类型和名称,也可以只给出参数的类型,省略参数的名称,这一点和函数原型非常类似。

注意( )的优先级高于*,第一个括号不能省略,如果写作returnType *pointerName(param list);就成了函数原型,它表明函数的返回值类型为returnType *

【实例】用指针来实现对函数的调用。

 
  
  1. #include
  2. //返回两个数中较大的一个
  3. int max(int a, int b){
  4. return a>b ? a : b;
  5. }
  6. int main(){
  7. int x, y, maxval;
  8. //定义函数指针
  9. int (*pmax)(int, int) = max; //也可以写作int (*pmax)(int a, int b)
  10. printf("Input two numbers:");
  11. scanf("%d %d", &x, &y);
  12. maxval = (*pmax)(x, y);
  13. printf("Max value: %d\n", maxval);
  14. return 0;
  15. }

运行结果:
Input two numbers:10 50↙
Max value: 50

第 14 行代码对函数进行了调用。pmax 是一个函数指针,在前面加 * 就表示对它指向的函数进行调用。注意( )的优先级高于*,第一个括号不能省略。

/*****************************************************************

C语言指针数组(数组每个元素都是指针)详解

如果一个数组中的所有元素保存的都是指针,那么我们就称它为指针数组。指针数组的定义形式一般为:

dataType *arrayName[length];

[ ]的优先级高于*,该定义形式应该理解为:

dataType *(arrayName[length]);

括号里面说明arrayName是一个数组,包含了length个元素,括号外面说明每个元素的类型为dataType *

除了每个元素的数据类型不同,指针数组和普通数组在其他方面都是一样的,下面是一个简单的例子:

 
  
  1. #include
  2. int main(){
  3. int a = 16, b = 932, c = 100;
  4. //定义一个指针数组
  5. int *arr[3] = {&a, &b, &c};//也可以不指定长度,直接写作 int *arr[]
  6. //定义一个指向指针数组的指针
  7. int **parr = arr;
  8. printf("%d, %d, %d\n", *arr[0], *arr[1], *arr[2]);
  9. printf("%d, %d, %d\n", **(parr+0), **(parr+1), **(parr+2));
  10. return 0;
  11. }

运行结果:
16, 932, 100
16, 932, 100

arr 是一个指针数组,它包含了 3 个元素,每个元素都是一个指针,在定义 arr 的同时,我们使用变量 a、b、c 的地址对它进行了初始化,这和普通数组是多么地类似。

parr 是指向数组 arr 的指针,确切地说是指向 arr 第 0 个元素的指针,它的定义形式应该理解为int *(*parr),括号中的*表示 parr 是一个指针,括号外面的int *表示 parr 指向的数据的类型。arr 第 0 个元素的类型为 int *,所以在定义 parr 时要加两个 *。

第一个 printf() 语句中,arr[i] 表示获取第 i 个元素的值,该元素是一个指针,还需要在前面增加一个 * 才能取得它指向的数据,也即 *arr[i] 的形式。

第二个 printf() 语句中,parr+i 表示第 i 个元素的地址,*(parr+i) 表示获取第 i 个元素的值(该元素是一个指针),**(parr+i) 表示获取第 i 个元素指向的数据。

指针数组还可以和字符串数组结合使用,请看下面的例子:

 
  
  1. #include
  2. int main(){
  3. char *str[3] = {
  4. "c.biancheng.net",
  5. "C语言中文网",
  6. "C Language"
  7. };
  8. printf("%s\n%s\n%s\n", str[0], str[1], str[2]);
  9. return 0;
  10. }

运行结果:
c.biancheng.net
C语言中文网
C Language

需要注意的是,字符数组 str 中存放的是字符串的首地址,不是字符串本身,字符串本身位于其他的内存区域,和字符数组是分开的。

也只有当指针数组中每个元素的类型都是char *时,才能像上面那样给指针数组赋值,其他类型不行。

为了便于理解,可以将上面的字符串数组改成下面的形式,它们都是等价的。

 
  
  1. #include
  2. int main(){
  3. char *str0 = "c.biancheng.net";
  4. char *str1 = "C语言中文网";
  5. char *str2 = "C Language";
  6. char *str[3] = {str0, str1, str2};
  7. printf("%s\n%s\n%s\n", str[0], str[1], str[2]);
  8. return 0;
  9. }

/**********************************************************

C语言指针的总结

指针(Pointer)就是内存的地址,C语言允许用一个变量来存放指针,这种变量称为指针变量。指针变量可以存放基本类型数据的地址,也可以存放数组、函数以及其他指针变量的地址。

程序在运行过程中需要的是数据和指令的地址,变量名、函数名、字符串名和数组名在本质上是一样的,它们都是地址的助记符:在编写代码的过程中,我们认为变量名表示的是数据本身,而函数名、字符串名和数组名表示的是代码块或数据块的首地址;程序被编译和链接后,这些名字都会消失,取而代之的是它们对应的地址。
 

常见指针变量的定义
定  义 含  义
int *p; p 可以指向 int 类型的数据,也可以指向类似 int arr[n] 的数组。
int **p; p 为二级指针,指向 int * 类型的数据。
int *p[n]; p 为指针数组。[ ] 的优先级高于 *,所以应该理解为 int *(p[n]);
int (*p)[n]; p 为二维数组指针。
int *p(); p 是一个函数,它的返回值类型为 int *。
int (*p)(); p 是一个函数指针,指向原型为 int func() 的函数。


1) 指针变量可以进行加减运算,例如p++p+ip-=i。指针变量的加减运算并不是简单的加上或减去一个整数,而是跟指针指向的数据类型有关。

2) 给指针变量赋值时,要将一份数据的地址赋给它,不能直接赋给一个整数,例如int *p = 1000;是没有意义的,使用过程中一般会导致程序崩溃。

3) 使用指针变量之前一定要初始化,否则就不能确定指针指向哪里,如果它指向的内存没有使用权限,程序就崩溃了。对于暂时没有指向的指针,建议赋值NULL

4) 两个指针变量可以相减。如果两个指针变量指向同一个数组中的某个元素,那么相减的结果就是两个指针之间相差的元素个数。

5) 数组也是有类型的,数组名的本意是表示一组类型相同的数据。在定义数组时,或者和 sizeof、& 运算符一起使用时数组名才表示整个数组,表达式中的数组名会被转换为一个指向数组的指针。 

你可能感兴趣的:(指针,c语言,开发语言)