昇科能源、清华大学欧阳明高院士团队等的最新研究成果《动态深度学习实现锂离子电池异常检测》,用已经处理的整车充电段数据,分析车辆当前或近期是否存在故障。
(array([[ -1.54891411, -107.14166667, 46.97083333, ..., 29. ,
26. , 0. ],
[ -1.54891411, -107.1625 , 47.16875 , ..., 29. ,
26. , 10. ],
[ -1.54891411, -107.18333333, 47.36666667, ..., 29. ,
26. , 20. ],
...,
[ 1.59613311, -90.29166667, 72.91666667, ..., 34. ,
31. , 1250. ],
[ 1.62806252, -90.02083333, 73.08333333, ..., 34. ,
31. , 1260. ],
[ 1.65999193, -89.6875 , 73.25 , ..., 34. ,
31. , 1270. ]]), OrderedDict([('label', '00'), ('car', 168), ('charge_segment', '122'), ('mileage', 1728.670740234375)]))
样本案例中取出第一条数据:
[ -1.54891411 -107.14166667 46.97083333 3.76328125 3.74908854
29. 26. 0. ]
model DynamicVAE(
(encoder_rnn): GRU(7, 128, num_layers=2, batch_first=True, bidirectional=True)
(decoder_rnn): GRU(2, 128, num_layers=2, batch_first=True, bidirectional=True)
(hidden2mean): Linear(in_features=512, out_features=8, bias=True)
(hidden2log_v): Linear(in_features=512, out_features=8, bias=True)
(latent2hidden): Linear(in_features=8, out_features=512, bias=True)
(outputs2embedding): Linear(in_features=256, out_features=5, bias=True)
(mean2latent): Sequential(
(0): Linear(in_features=8, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=1, bias=True)
)
battery_brand1五折交叉验证后的结果,感觉召回率不理想啊,忧愁。