力扣刷题 DAY_32 栈与队列

Leetcode239

链接:力扣

题目:

给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回滑动窗口中的最大值。

说明:

    1 <= nums.length <= 10^5
    -10^4 <= nums[i] <= 10^4
    1 <= k <= nums.length

示例1:

输入: nums = [1,3,-1,-3,5,3,6,7], k = 3
输出: [3,3,5,5,6,7]
解释: 
Window position                Max
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

示例2:

输入: nums = [1], k = 1
输出: [1]

思路:

这是使用单调队列的经典题目。

我们需要一个队列,这个队列呢,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么。每次窗口移动的时候,调用que.pop(滑动窗口中移除元素的数值),que.push(滑动窗口添加元素的数值),然后que.front()就返回我们要的最大值。

然后在分析一下,队列里的元素一定是要排序的,而且要最大值放在出队口,要不然怎么知道最大值呢。

但如果把窗口里的元素都放进队列里,窗口移动的时候,队列需要弹出元素。

那么问题来了,已经排序之后的队列 怎么能把窗口要移除的元素(这个元素可不一定是最大值)弹出呢。

大家此时应该陷入深思.....

其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队里里的元素数值是由大到小的。

那么这个维护元素单调递减的队列就叫做单调队列,即单调递减或单调递增的队列。C++中没有直接支持单调队列,需要我们自己做一个单调队列。

设计单调队列的时候,pop,和push操作要保持如下规则:

  1. pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
  2. push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止

保持如上规则,每次窗口移动的时候,只要问que.front()就可以返回当前窗口的最大值。

参考代码:

class Solution {
public:
    class MyQueue {
    public:
        deque q;
        void push(int x) {
            while (!q.empty() && q.back() < x) {
                q.pop_back();
            }
        q.push_back(x);
        }
        void pop(int x) {
            if (!q.empty() && q.front() == x) {
                q.pop_front();
            }
        }
        int front() {
            return q.front();
        }
    };
    
    vector maxSlidingWindow(vector& nums, int k) {
        MyQueue que;
        vector result;
        for (int i = 0; i < k; i++) {
            que.push(nums[i]);
        }
        result.push_back(que.front());
        for (int i = k; i < nums.size(); i++) {
            que.pop(nums[i - k]);
            que.push(nums[i]);
            result.push_back(que.front());
        }
        return result;
    }
};

你可能感兴趣的:(力扣刷题,leetcode,算法)