通讯协议学习之路(实践部分):SPI开发实践

通讯协议之路主要分为两部分,第一部分从理论上面讲解各类协议的通讯原理以及通讯格式,第二部分从具体运用上讲解各类通讯协议的具体应用方法。

后续文章会同时发表在个人博客(jason1016.club)、CSDN;视频会发布在bilibili(UID:399951374)

本文前缀:

通讯协议专栏:通讯协议_JASON丶LI的博客-CSDN博客

UART理论部分:

一、具体实践方案选择

同样的对于SPI也具有软件模拟和硬件外设配置的两种方案,此外也同样可以采用DMA转运数据、中断处理数据、轮询处理数据这三种方案。

软件SPI和硬件SPI之间的关系是,软件SPI是对硬件SPI的一种软件实现。软件SPI可以在没有硬件SPI模块的情况下实现SPI通信,但由于软件实现的限制,软件SPI的速度和可靠性可能不如硬件SPI。在一些资源受限的系统中,软件SPI是一种常用的替代方案。

软件模拟

按照SPI传输的时序与模式,通过对SCK、SS、MOSI、MISO这四个进行高低电平的时序配置是实现SPI通讯协议的模拟。

硬件模式

硬件模式直接配置单片机的SPI外设,使用其封装的库进行协议通信,不需要像软件一样一步步配置其时序,硬件SPI的工作状态主要通过读其SPI内部寄存器进行判断。其信息读取的4种模式按照参考下表。

通讯协议学习之路(实践部分):SPI开发实践_第1张图片

NSS管脚与片选

NSS管脚及我们熟知的片选信号,作为主设备NSS管脚为高电平,从设备NSS管脚为低电平。当NSS管脚为低电平时,该spi设备被选中,可以和主设备进行通信。在stm32中,每个spi控制器的NSS信号引脚都具有两种功能,即输入和输出。所谓的输入就是NSS管脚的信号给自己。所谓的输出就是将NSS的信号送出去,给从机。

对于NSS的输入,又分为软件输入和硬件输入。

软件输入:

NSS分为内部管脚和外部管脚,通过设置spi_cr1寄存器的ssm位和ssi位都为1可以设置NSS管脚为软件输入模式且内部管脚提供的电平为高电平,其中SSM位为使能软件输入位。SSI位为设置内部管脚电平位。同理通过设置SSM和SSI位1和0则此时的NSS管脚为软件输入模式但内部管脚提供的电平为0。若从设备是一个其他的带有spi接口的芯片,并不能选择NSS管脚的方式,则可以有两种办法,一种是将NSS管脚直接接低电平。另一种就是通过主设备的任何一个gpio口去输出低电平选中从设备。

硬件输入:

主机接高电平,从机接低电平。

二、开发实践

标准库

软件SPI

SPI_Software.c
#include "stm32f10x.h"                  // Device header
#include "SPI_Software.h"

void MySPI_W_SS(uint8_t BitValue)
{
    GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)BitValue);
}

void MySPI_W_SCK(uint8_t BitValue)
{
    GPIO_WriteBit(GPIOA, GPIO_Pin_5, (BitAction)BitValue);
}

void MySPI_W_MOSI(uint8_t BitValue)
{
    GPIO_WriteBit(GPIOA, GPIO_Pin_7, (BitAction)BitValue);
}

uint8_t MySPI_R_MISO(void)
{
    return GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6);
}

void MySPI_Init(void)
{
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
    
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_7;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
    
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
    
    MySPI_W_SS(1);
    MySPI_W_SCK(0);
}

void MySPI_Start(void)
{
    MySPI_W_SS(0);
}

void MySPI_Stop(void)
{
    MySPI_W_SS(1);
}

uint8_t MySPI_SwapByte(uint8_t ByteSend)
{
    uint8_t i, ByteReceive = 0x00;
    
    for (i = 0; i < 8; i ++)
    {
        MySPI_W_MOSI(ByteSend & (0x80 >> i));
        MySPI_W_SCK(1);
        if (MySPI_R_MISO() == 1){ByteReceive |= (0x80 >> i);}
        MySPI_W_SCK(0);
    }
    
    return ByteReceive;
}

//SPI写应该Byte函数
void SPI_WriteByte(uint8_t Byte)
{
    uint8_t i;
    for(i = 0;i < 8;i++)
    {
        //SCK从低电平到高电平(上升沿)时传输数据
        MySPI_W_SCK(0);
        if(Byte & 0x80)            //取出最高为,每次只能传输一个bit的数据
        {
            MySPI_W_MOSI(1);
        }
        else
        {
            MySPI_W_MOSI(0);
        }
        Byte <<= 1;
        MySPI_W_SCK(1);
    }
    MySPI_W_SCK(0);
}
 
//SPI读一个Byte函数
uint8_t SPI_ReadByte(void)
{
    uint8_t i,Byte;
    MySPI_W_SCK(0);
    for(i = 0;i < 8;i++)
    {
        MySPI_W_SCK(1);
        Byte <<= 1;
        if(MySPI_R_MISO())
        {
            Byte ++;
        }
        MySPI_W_SCK(0);
    }
    return Byte;
}

SPI_Software.h
#ifndef __SPISOFTWARE_H
#define __SPISOFTWARE_H

#include "stm32f10x.h"                  // Device header

void MySPI_W_SS(uint8_t BitValue);


void MySPI_W_SCK(uint8_t BitValue);


void MySPI_W_MOSI(uint8_t BitValue);

uint8_t MySPI_R_MISO(void);



void MySPI_Init(void);

void SPI_WriteByte(uint8_t Byte);

uint8_t SPI_ReadByte(void);



#endif
SPI_Control.c
#include "SPI_Control.h"
#include "SPI_Software.h"

//设备为:25AA010A


//EEPROM开启写使能函数
void EEPROM_Write_ENABLE(void)
{
    //MySPI_W_SS(1);
    MySPI_W_SS(0);
    SPI_WriteByte(EEPROM_Address_ENABLE);
    MySPI_W_SS(1);
}
 
//EEPROM关闭写使能函数
void EEPROM_Write_DISABLE(void)
{
    //MySPI_W_SS(1);
    MySPI_W_SS(0);
    SPI_WriteByte(EEPROM_Address_DISABLE);
    MySPI_W_SS(1);
}
 
//从EEPROM中读取数据
uint8_t EEPROM_Read(uint8_t HW_Address,uint8_t SW_Address)
{
    uint8_t date = 0;
    //MySPI_W_SS(1);
    MySPI_W_SS(0);
    SPI_WriteByte(HW_Address);
    SPI_WriteByte(SW_Address);
    date = SPI_ReadByte();
    MySPI_W_SS(1);
    return date;
}
 
//往EEPROM中写数据函数
void EEPROM_Write(uint8_t HW_Address,uint8_t SW_Address,uint8_t date)
{
    //HW_Address:EEPROM硬件地址
    //SW_Address: EEPROM的软件地址,即写出内存的地址
    uint8_t status = 0x01;        
    EEPROM_Write_ENABLE();                            //开启写使能
    //MySPI_W_SS(1);
    MySPI_W_SS(0);
    SPI_WriteByte(HW_Address);
    SPI_WriteByte(SW_Address);
    SPI_WriteByte(date);
    MySPI_W_SS(1);
    
    //读取EEPROM状态寄存器的最低为,当状态寄存器的最低位为1表示还未写完
    while(1)
    {
        //MySPI_W_SS(1);
        MySPI_W_SS(0);
        SPI_WriteByte(EEPROM_Address_REGISTER);
        status = SPI_ReadByte();
        if((status & 0x01) == 0)
        {
            break;
        }
        MySPI_W_SS(1);
    }
    EEPROM_Write_DISABLE();                        //关闭写使能
}
SPI_Control.h
#ifndef __SPICONTROL_H
#define __SPICONTROL_H

#include "stm32f10x.h"                  // Device header

#define EEPROM_Address_W 0x02                                //从指定地址开始写
#define EEPROM_Address_R 0X03                                //从指定地址开始读
#define EEPROM_Address_ENABLE 0x06                    //开启写使能命令
#define EEPROM_Address_DISABLE 0x04                    //关闭写使能命令
#define EEPROM_Address_REGISTER 0x05        //读取寄存器的状态(状态寄存器的值)


void EEPROM_Write_ENABLE(void);

void EEPROM_Write_DISABLE(void);

uint8_t EEPROM_Read(uint8_t HW_Address,uint8_t SW_Address);

void EEPROM_Write(uint8_t HW_Address,uint8_t SW_Address,uint8_t date);


#endif
main.c
#include "stm32f10x.h"                  // Device header
#include 
#include "delay.h"
#include "sys.h"
#include "led.h"
#include "OLED.h"
#include "key.h"
#include "SPI_Control.h"
#include "SPI_Software.h"

uint8_t RxData;
extern uint8_t num;

int main(void)
{
    led_Init();
    Key_Init();
    OLED_Init();
    MySPI_Init();
//    num = EEPROM_Read(EEPROM_Address_R,0x00);
    while(1)
    {
        OLED_ShowNum(1,1,num,2);
        EEPROM_Write(EEPROM_Address_W,0x00,num);
        led_turn(GPIOB, GPIO_Pin_0);
        Delay_ms(1000);
    }
}

硬件SPI

HAL库

模式设置:

  1. 有主机模式全双工/半双工——Full-Duplex Master
  2. 从机模式全双工/半双工——Ful-Duplex Slave
  3. 只接收主机模式/只接收从机模式——Half-Duplex Master
  4. 只发送主机模式——Half-Duplex Slave

SPI发送和接收轮询、中断、DMA三种模式操作函数

/* IO operation functions  ****************************************************/
/******* Blocking mode: Polling */
HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout);

/******* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);

HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress);

/******* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);

HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);

 硬件模式:

SPI的proteus硬件模式仍在调试,后续会持续更新

你可能感兴趣的:(通讯协议,学习,物联网,单片机,stm32,网络)