STL(standard template libaray-标准模板库):是C++标准库的重要组成部分,不仅是一个可复用的组件库,而且是一个包罗数据结构与算法的软件框架。
原始版本
Alexander Stepanov、Meng Lee 在惠普实验室完成的原始版本,本着开源精神,他们声明允许任何人任意运用、拷贝、修改、传播、商业使用这些代码,无需付费。唯一的条件就是也需要向原始版本一样做开源使用。 HP 版本–所有STL实现版本的始祖。
P. J. 版本
由P. J. Plauger开发,继承自HP版本,被Windows Visual C++采用,不能公开或修改,缺陷:可读性比较低,符号命名比较怪异。
RW版本
由Rouge Wage公司开发,继承自HP版本,被C+ + Builder 采用,不能公开或修改,可读性一般。
SGI版本
由Silicon Graphics Computer Systems,Inc公司开发,继承自HP版 本。被GCC(Linux)采用,可移植性好,可公开、修改甚至贩卖,从命名风格和编程 风格上看,阅读性非常高。我们后面学习STL要阅读部分源代码,主要参考的就是这个版本。
1、在笔试中
二叉数层序打印
重建二叉树
两个栈实现一个队列
2、在面试中
3、 在工作中
网上有句话说:“不懂STL,不要说你会C++”。STL是C++中的优秀作品,有了它的陪伴,许多底层的数据结构以及算法都不需要自己重新造轮子,站在前人的肩膀上,健步如飞的快速开发。
C语言中,字符串是以’\0’结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列的库函数,但是这些库函数与字符串是分离开的,不太符合OOP的思想,而且底层空间需要用户自己管理,稍不留神可能还会越界访问。
在OJ中,有关字符串的题目基本以string类的形式出现,而且在常规工作中,为了简单、方便、快捷,基本都使用string类,很少有人去使用C库中的字符串操作函数。
string类的文档介绍
在使用string类时,必须包含#include头文件以及using namespace std;
上面的几个接口大家了解一下,下面的OJ题目中会有一些体现他们的使用。string类中还有一些其他的操作,这里不一一列举,大家在需要用到时不明白了查文档即可。
注意:下述结构是在32位平台下进行验证,32位平台下指针占4个字节。
vs下string的结构
string总共占28个字节,内部结构稍微复杂一点,先是有一个联合体,联合体用来定义string中字符串的存储空间:
当字符串长度小于16时,使用内部固定的字符数组来存放
当字符串长度大于等于16时,从堆上开辟空间
这种设计也是有一定道理的,大多数情况下字符串的长度都小于16,那string对象创建好之后,内部已经有了16个字符数组的固定空间,不需要通过堆创建,效率高。
其次:还有一个size_t字段保存字符串长度,一个size_t字段保存从堆上开辟空间总的容量
最后:还有一个指针做一些其他事情。
故总共占16+4+4+4=28个字节。
g++下string的结构
G++下,string是通过写时拷贝实现的,string对象总共占4个字节,内部只包含了一个指针,该指针将来指向一块堆空间,内部包含了如下字段:
空间总大小
字符串有效长度
引用计数
指向堆空间的指针,用来存储字符串。
仅仅反转字母
class Solution {
public:
bool isLetter(char ch)
{
if(ch >= 'a' && ch <= 'z')
return true;
if(ch >= 'A' && ch <= 'Z')
return true;
return false;
}
string reverseOnlyLetters(string S) {
if(S.empty())
return S;
size_t begin = 0, end = S.size()-1;
while(begin < end)
{
while(begin < end && !isLetter(S[begin]))
++begin;
while(begin < end && !isLetter(S[end]))
--end;
swap(S[begin], S[end]);
++begin;
--end;
}
return S;
}
找字符串中第一个只出现一次的字符
class Solution {
public:
int firstUniqChar(string s) {
// 统计每个字符出现的次数
int count[256] = {0};
int size = s.size();
for(int i = 0; i < size; ++i)
count[s[i]] += 1;
// 按照字符次序从前往后找只出现一次的字符 for(int i = 0; i < size; ++i)
if(1 == count[s[i]])
return i;
return -1;
}
};
验证一个字符串是否是回文
class Solution {
public:
bool isLetterOrNumber(char ch)
{
return (ch >= '0' && ch <= '9')
|| (ch >= 'a' && ch <= 'z')
|| (ch >= 'A' && ch <= 'Z');
}
bool isPalindrome(string s) {
// 先小写字母转换成大写,再进行判断
for(auto& ch : s)
{
if(ch >= 'a' && ch <= 'z')
ch -= 32;
}
int begin = 0, end = s.size()-1;
while(begin < end)
{
while(begin < end && !isLetterOrNumber(s[begin]))
++begin;
while(begin < end && !isLetterOrNumber(s[end]))
--end;
if(s[begin] != s[end])
{
return false;
}
else
{
++begin;
--end;
}
}
return true;
}
};
字符串相加
class Solution {
public:
string addstrings(string num1, string num2)
{
// 从后往前相加,相加的结果到字符串可以使用insert头插
// 或者+=尾插以后再reverse过来
int end1 = num1.size()-1;
int end2 = num2.size()-1;
int value1 = 0, value2 = 0, next = 0;
string addret;
while(end1 >= 0 || end2 >= 0)
{
if(end1 >= 0)
value1 = num1[end1--]-'0';
else
value1 = 0;
if(end2 >= 0)
value2 = num2[end2--]-'0';
else
value2 = 0;
int valueret = value1 + value2 + next;
if(valueret > 9)
{
next = 1;
valueret -= 10;
}
else
{
next = 0;
}
//addret.insert(addret.begin(), valueret+'0');
addret += (valueret+'0');
}
if(next == 1)
{
//addret.insert(addret.begin(), '1');
addret += '1';
}
reverse(addret.begin(), addret.end());
return addret;
}
};