Milvus针对向量数据做归一化处理

milvus归一化数据证明参考:
https://zhuanlan.zhihu.com/p/88117781
python处理归一化参考:
https://www.cnblogs.com/lvdongjie/p/11349701.html
官方文档sklearn参考:
https://scikit-learn.org/stable/
https://www.sklearncn.cn/40/

归一化

归一化 是 缩放单个样本以具有单位范数 的过程。如果你计划使用二次形式(如点积或任何其他核函数)来量化任何样本间的相似度,则此过程将非常有用。

这个观点基于 向量空间模型(Vector Space Model) ,经常在文本分类和内容聚类中使用.

函数 normalize 提供了一个快速简单的方法在类似数组的数据集上执行操作,使用 l1 或 l2 范式:

from sklearn import preprocessing
>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')

>>> X_normalized                                      
array([[ 0.40..., -0.40...,  0.81...],
 [ 1.  ...,  0.  ...,  0.  ...],
 [ 0.  ...,  0.70..., -0.70...]])

preprocessing 预处理模块提供的 Normalizer 工具类使用 Transformer API 实现了相同的操作(即使在这种情况下, fit 方法是无用的:该类是无状态的,因为该操作独立对待样本).

因此这个类适用于 sklearn.pipeline.Pipeline 的早期步骤:

>>> normalizer = preprocessing.Normalizer().fit(X)  # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2')

在这之后归一化实例可以被使用在样本向量中,像任何其他转换器一样:

>>> normalizer.transform(X)                            
array([[ 0.40..., -0.40...,  0.81...],
 [ 1.  ...,  0.  ...,  0.  ...],
 [ 0.  ...,  0.70..., -0.70...]])

>>> normalizer.transform([[-1.,  1., 0.]])             
array([[-0.70...,  0.70...,  0.  ...]])

稀疏(数据)输入

函数 normalize 以及类 Normalizer 接收 来自scipy.sparse的密集类数组数据和稀疏矩阵 作为输入。

对于稀疏输入,在被提交给高效Cython例程前,数据被 转化为压缩的稀疏行形式 (参见 scipy.sparse.csr_matrix )。为了避免不必要的内存复制,推荐在上游选择CSR表示。

你可能感兴趣的:(NLP实战项目,笔记,python,sklearn,python,机器学习)