三极管 MOSFET不完全手册

1 基极对射级下拉电阻的作用

       如果三极管不接下拉电阻,就不能设定偏制电压,这样会产生输入信号的交越失真,并且输入电流过大的时候会导致大电流直接流入三极管而损坏.三极管我们分析的时候有时候总是认为它的内部是有二极管的效应的,但这样是错误的认识,应该更正.而MOS管同样需要一个偏制电压,而下拉电阻可以起到这样的作用,我们一般称之为GATE偏制.由于MOS管内部的三个级是彼此绝缘的,所以自然会有电容效应在,当信号消失的时候内部的等效电容可以通过下拉电阻进行放电.而且也是必须的,否则会逻辑出错.]最典型的三极管教科书电流就是一个分压电路后接一个射级跟随器了.分析这个电路就完全可以理解三极管的工作原理了。

        特别是GPIO连接此基极的时候,一般在GPIO所在IC刚刚上电初始化的时候,此GPIO的内部也处于一种上电状态,很不稳定,容易产生噪声,引起误动作!
[COLOR=#0000FF]加此电阻,可消除此影响!但是电阻不能过小,影响泄漏电流

    接下拉电阻时还要注意:1)但是电阻不能过小,影响泄漏电流;下拉电阻阻值不能太大,不然会导致流入基级的电流太小.2)如果是高速开关信号,尽量在下拉电阻上并连一个电容以提高高速!

 

2 MOSFET 应用

        在低电压(100V以下)驱动应用中,多使用MOSFET作为功率转换器件。随着电压的提高,MOSFET的优势也随着不明显,所以在高压的应用场合,多使用IGBT作为功能器件,该类器件的耐压可以做得较高,结合了FET和三极管的优点,它的导通电阻和开关速度不比MOSFET,所以器件本身的导通损耗和开关损耗都比较大,一般需要另加散热装置。

        驱动MOSFET,可以选用专用MOSFET驱动IC完成电平转换和驱动因为MOSFET的栅-源极之间存在寄生电容,MOSFET的开和关过程,是对电容的充放电过程,如果MOSFET的驱动电路不能提供足够的峰值电流(如1A的输入/输出电流),则会降低MOSFET的开关速度。另一方面,驱动桥臂的上半桥的N沟道管……

如下图,是应用MOSFET驱动IC驱动由两个MOSFET搭建的半桥。易注意到:在MOSFET的栅极和驱动IC的输出之间串联了一个电阻。这个电阻称为“栅极电阻”,取值一般为10~100欧姆不等,其作用是调节MOSFET的开关速度,减少栅极出现的振铃现象,减小EMI,也可以对栅极电容充放电的限流作用。由于驱动器和MOSFET栅极之间的引线、地回路的引线等所产生的电感,和IC和FET内部的寄生电感,在开启时会在MOSFET栅极出现振铃,这是设计者不愿意得到的,一方面增加MOSFET的开关损耗,同时EMC方面不好控制。栅极电阻的引入虽然影响了MOSFET的开关速度,但得到可靠的栅极波形和减少EMI。两者之间的平衡点视实际应用而定。

 

 

       

       

        因特性决定,MOSFET的关断速度比开启速度慢,并大多应用希望MOSFET的关断速度要尽量快,所以对以上电路,要求改善电路的关断速度,可使用如下图之电路进行改善:如图,引入了二极管,当需要关闭MOSFET时,栅极寄生电容放电时,栅极电阻被二极管短路,所以电流不经过栅极电阻,相当于在关闭时栅极电阻不存在,这样缩短了栅极寄生电容的放电时间,即提高了MOSFET的关断速度。二极管使用一般的型号即可应付。对于要求更高速的应用,会使用有源主动放电,电机应用中一般不使用,这里不作介绍

            如下电路图,在上图的基础上,在半桥的浮地引入一只电阻R3。这个电阻一方面可以设置MOSFET的开、关速度,另一方面,由于电机的线圈为感性负载,在浮地端可能会出现负电压,R3的引入可以作限流作用,从而保护MOSFET驱动IC的VS端。

        因此电阻会同时降低MOSFET的开关速度,故其取值不宜太大。如上所述,电机驱动应用中,电机线圈是感性负载,在VS端可能会出现负电压,这可能使自举电容充电时超过了+15V。

 

       

             为了防止以上的情况发生,出于保护MOSFET驱动IC的目的,再次引入一只二极管,用于对VS端电压的钳位。

         由于MOSFET为电压敏感器件,如在上电时,MOSFET可能出有效电压,使MOSFET意外地导通,这也是设计者不愿意看到的。

 

        R4和R5的引入相当于一个下拉电阻,使在驱动电路没有电流输出时,保证MOSFET的Ugs的电压为0,确保MOSFET被关断。

        MOSFET的栅-源极电压一般不能承受太高的电压(一般是20V以下),如下电路图所示,在MOSFET的栅极引入电压钳位器件,用于保护MOSFET。

 

        以上是电机驱动器的常用电机驱动电路的应用笔记,其中的观点存在不妥甚至错误在所难免,但我们尽量减少这样的失误。如果存在这样的情况请联系我们。

不同的应用,部分器件的取舍、器件的选择等有所不同,只有理解电路中每个元件的作用,才能设计出合理的电路,达到设计的最优。除了器件,线路板(PCB)的布局、布线也应得到重视。


 

你可能感兴趣的:(Embedded,emc,工作)