[动手学深度学习]注意力机制Transformer学习笔记

动手学深度学习(视频):68 Transformer【动手学深度学习v2】_哔哩哔哩_bilibili

动手学深度学习(pdf):10.7. Transformer — 动手学深度学习 2.0.0 documentation (d2l.ai)

李沐Transformer论文逐段精读:Transformer论文逐段精读【论文精读】_哔哩哔哩_bilibili

Vaswani, A. et al. (2017) 'Attention is all you need', 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. doi: https://doi.org/10.48550/arXiv.1706.03762

目录

1. Transformer

1.1. 整体实现步骤

1.2. Transformer理念

1.3. Transformer代码实现

1.4. Transformer弊端和局限

2. Transformer论文原文学习

2.1. Abstract

2.2. Introduction

2.3. Background

2.4. Model Architecture

2.4.1. Encoder and Decoder Stacks

2.4.2. Attention

2.4.3. Position-wise Feed-Forward Networks

2.4.4. Embeddings and Softmax

2.4.5. Positional Encoding

2.5.  Why Self-Attention

2.6. Training

2.6.1. Training Data and Batching

2.6.2. Hardware and Schedule

2.6.3. Optimizer

2.6.4. Regularization

2.7. Results

2.7.1. Machine Translation

2.7.2. Model Variations

2.7.3. English Constituency Parsing

2.8. Conclusion


1. Transformer

1.1. 整体实现步骤

(1)模型图

[动手学深度学习]注意力机制Transformer学习笔记_第1张图片

1.2. Transformer理念

(1)摒弃了传统费时的卷积和循环,仅采用注意力机制和全连接构成整个网络

(2)多使用残差连接

(3)Mask的提出

(4)李沐特地讲解了batch norm和layer norm的区别,主要是取的块不一样:

1.3. Transformer代码实现

(1)代码网址:GitHub - tensorflow/tensor2tensor: Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

(2)李沐

        ①Encoder

class EncoderBlock(nn.Module):
    """Transformer编码器块"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,
                 norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
                 dropout, use_bias=False, **kwargs):
        super(EncoderBlock, self).__init__(**kwargs)
        self.attention = d2l.MultiHeadAttention(
            key_size, query_size, value_size, num_hiddens, num_heads, dropout,
            use_bias)
        self.addnorm1 = AddNorm(norm_shape, dropout)
        self.ffn = PositionWiseFFN(
            ffn_num_input, ffn_num_hiddens, num_hiddens)
        self.addnorm2 = AddNorm(norm_shape, dropout)

    def forward(self, X, valid_lens):
        Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
        return self.addnorm2(Y, self.ffn(Y))

        ②Decoder

class DecoderBlock(nn.Module):
    """解码器中第i个块"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,
                 norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
                 dropout, i, **kwargs):
        super(DecoderBlock, self).__init__(**kwargs)
        self.i = i
        self.attention1 = d2l.MultiHeadAttention(
            key_size, query_size, value_size, num_hiddens, num_heads, dropout)
        self.addnorm1 = AddNorm(norm_shape, dropout)
        self.attention2 = d2l.MultiHeadAttention(
            key_size, query_size, value_size, num_hiddens, num_heads, dropout)
        self.addnorm2 = AddNorm(norm_shape, dropout)
        self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens,
                                   num_hiddens)
        self.addnorm3 = AddNorm(norm_shape, dropout)

    def forward(self, X, state):
        enc_outputs, enc_valid_lens = state[0], state[1]
        # 训练阶段,输出序列的所有词元都在同一时间处理,
        # 因此state[2][self.i]初始化为None。
        # 预测阶段,输出序列是通过词元一个接着一个解码的,
        # 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示
        if state[2][self.i] is None:
            key_values = X
        else:
            key_values = torch.cat((state[2][self.i], X), axis=1)
        state[2][self.i] = key_values
        if self.training:
            batch_size, num_steps, _ = X.shape
            # dec_valid_lens的开头:(batch_size,num_steps),
            # 其中每一行是[1,2,...,num_steps]
            dec_valid_lens = torch.arange(
                1, num_steps + 1, device=X.device).repeat(batch_size, 1)
        else:
            dec_valid_lens = None

        # 自注意力
        X2 = self.attention1(X, key_values, key_values, dec_valid_lens)
        Y = self.addnorm1(X, X2)
        # 编码器-解码器注意力。
        # enc_outputs的开头:(batch_size,num_steps,num_hiddens)
        Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens)
        Z = self.addnorm2(Y, Y2)
        return self.addnorm3(Z, self.ffn(Z)), state

1.4. Transformer弊端和局限

(1)位置信息表示弱

(2)长距离文本学习能力弱

2. Transformer论文原文学习

2.1. Abstract

(1)Bcakground: the sequence transduction model prevails with complicated convolution or recurrence.

(2)Purpose: they put forward a simple attention model without convolution or recurrence, which not only decreases the training time, but also increases the accuracy of translation

transduction  n.转导

2.2. Introduction

        ①Previous model: RNN, LSTM, gated RNN

        ②RNN limits in parallel computing in that it is highly rely on previous data

        ③Factorization tricks and conditional computation have made great achievement nowadays. However, reseachers are still unable to break free from the constraints of sequential computation.

        ④Attention mechanism can ignore the position of words

eschew  vt.避免;(有意地)避开;回避

2.3. Background

        ①Extended Neural GPU, ByteNet and ConvS2S try reducing the sequential mechanism. However, they still explode in distance computation.

        ②Self-attention, also named intra-attention has been used in "reading comprehension, abstractive summarization, textual entailment and learning task-independent sentence representations"

2.4. Model Architecture

        ①The Transformer model shows below:

[动手学深度学习]注意力机制Transformer学习笔记_第2张图片

Inputs are denoted by \left ( x_{1},x_{2}...x_{n} \right ) , then encode them to \left ( z_{1},z_{2}...z_{n} \right ) . Lastly decode z to \left ( y_{1},y_{2}...y_{m} \right ) (⭐input sequence and output sequence may not be of equal length).

        ②The model is auto-regressive

        ③The left of this figure is encode layer, and the right halves are decoder.

2.4.1. Encoder and Decoder Stacks

(1)Encoder

        ①N=6

        ②"Add" means adding x and sublayer(x), then using layer norm

(2)Decoder

        ①N=6

        ②Masked layer ensures x_{i} can only see the previous input of its position

2.4.2. Attention

(1)Scaled Dot-Product Attention

        ①The model shows below:

[动手学深度学习]注意力机制Transformer学习笔记_第3张图片

where Q denotes queries and K denotes keys of dimension d_{k}, V denotes values of dimension d_{v}

        ②The function of Scaled Dot-Product Attention:

\text{Attention}(Q,K,V)=\text{softmax}(\frac{QK^T}{\sqrt{d_k}})V

        ③They set \sqrt{d_{k}} as the dividend. They reckon when d_{k} increaces, additive attention outpeforms dot product attention.

        ④The more the dimension is, the less gradient the softmax is. Hence they scale the dot product.

(2) Multi-Head Attention

        ①The model shows below:

[动手学深度学习]注意力机制Transformer学习笔记_第4张图片

        ②The function of this block is:

\begin{aligned} \mathrm{MultiHead}(Q,K,V)& =\mathrm{Concat}(\mathrm{head}_{1},...,\mathrm{head}_{\mathrm{h}})W^{O} \\ \mathrm{where~head_{i}}& =\mathrm{Attention}(QW_{i}^{Q},KW_{i}^{K},VW_{i}^{V}) \end{aligned}

where all the W are parameter matrices. Additionally, h=8, and they set 

d_{k}=d_{v}=d_{\mathrm{model}}/h=64

(3)Applications of Attention in our Model

        ①Each position in the decoder participates in all positions in the input sequence

        ②Each position in the encoder can handle all positions in the previous layer of the encoder

        ③Mask all values on the right that have not yet appeared and represent them with -\infty (so when they participate in softmax layer, they always get 0)

2.4.3. Position-wise Feed-Forward Networks

        ① Function of fully connected feed-forward network:

\mathrm{FFN}(x)=\max(0,xW_1+b_1)W_2+b_2

where the input and output dimension d_{\mathrm{model}}=512 , and the inner-layer dimension d_{ff}=2048

2.4.4. Embeddings and Softmax

        ①The two embedding layers and the pre-softmax linear transformation are using the same weight matrix

        ②Table of different complexity for different layers:

[动手学深度学习]注意力机制Transformer学习笔记_第5张图片

where d denotes dimension, k denotes the size of convolutional kernal, n denotes length of sequence, and r is the size of the neighborhood in restricted self-attention

2.4.5. Positional Encoding

        ①Positional encodings:

\begin{aligned}PE_{(pos,2i)}&=sin(pos/10000^{2i/d_{\mathrm{model}}})\\PE_{(pos,2i+1)}&=cos(pos/10000^{2i/d_{\mathrm{model}}})\end{aligned}

where pos means position and i means dimension.

        ②They also tried learned positional embeddings, which got a similar result.

        ③Sinusoidal version allows longer sequence

2.5.  Why Self-Attention

        ①Low computational complexity, parallelized computation and short path length are the advantages of self-attention

        ②分析了一堆时间空间复杂度吗?我不是很看得懂

2.6. Training

2.6.1. Training Data and Batching

        They used WMT 2014 English-German dataset and WMT 2014 English-French dataset with 4.5 million sentence pairs and 36M sentences respectively.

2.6.2. Hardware and Schedule

        By each step in 1 second, they trained 300,000 steps (about 3.5 days)

2.6.3. Optimizer

        ①Adam optimizer: β1 = 0.9, β2 = 0.98 and ϵ = 10−9

        ②Learning rate: 

lrate=d_{\mathrm{model}}^{-0.5}\cdot\min(step\_num^{-0.5},step\_num\cdot warmup\_steps^{-1.5})

where warmup_steps = 4000 at the beginning

2.6.4. Regularization

        ①Dropout rate: 0.1

        ②Label smoothing value  \epsilon _{ls}=0.1 , which causes perplexity but increases accuracy and BLEU score

2.7. Results

2.7.1. Machine Translation

        Comparison of accuracy with other models:

[动手学深度学习]注意力机制Transformer学习笔记_第6张图片

2.7.2. Model Variations

        ①Variations of Transformer

[动手学深度学习]注意力机制Transformer学习笔记_第7张图片

where (A) changes the number of attention heads, attention key, and dimension of value, (B) adjusts the size of attention key, (C) and (D) control model size and dropout rate, (E) replaces sinusoidal positional encoding by learned positional embeddings. These ablation studies have successfully demonstrated the superiority of Transformer.

2.7.3. English Constituency Parsing

        ①Comparison table of generalization performance:

[动手学深度学习]注意力机制Transformer学习笔记_第8张图片

2.8. Conclusion

        ①This is the first model which only based on attention mechanism

        ②Outperforms any other previous model

你可能感兴趣的:(深度学习笔记,深度学习,transformer,学习,机器学习,笔记,人工智能,自然语言处理)