Given the root of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.
Example 1:
Input: root = [1,2,3,null,5,null,4]
Output: [1,3,4]
Example 2:
Input: root = [1,null,3]
Output: [1,3]
Example 3:
Input: root = []
Output: []
Constraints:
The number of nodes in the tree is in the range [0, 100].
-100 <= Node.val <= 100
解法1:DFS遍历。
注意: if (res.size() < depth) 表示这是这一层的最右边的节点
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
if (!root) return {};
vector<int> res;
helper(root, 1, res);
return res;
}
private:
int depth = 0;
void helper(TreeNode* root, int depth, vector<int> &res) {
if (!root) return;
if (res.size() < depth) {
res.push_back(root->val);
}
helper(root->right, depth + 1, res);
helper(root->left, depth + 1, res);
}
};
解法2:BFS
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> res;
if (!root) return res;
queue<TreeNode *> q;
q.push(root);
res.push_back(root->val);
while (!q.empty()) {
int qSize = q.size();
bool first = false;
for (int i = 0; i < qSize; i++) {
TreeNode *frontNode = q.front();
q.pop();
if (frontNode->right) {
q.push(frontNode->right);
if (!first) {
res.push_back(frontNode->right->val);
first = true;
}
}
if (frontNode->left) {
q.push(frontNode->left);
if (!first) {
res.push_back(frontNode->left->val);
first = true;
}
}
}
}
return res;
}
};
上面的可以简化。因为每层的最前的元素就是最右边的元素,如果是先压右儿子,后压左儿子的话。
res.push_back(q.front()->val);
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> res;
if (!root) return res;
queue<TreeNode *> q;
q.push(root);
while (!q.empty()) {
res.push_back(q.front()->val);
int qSize = q.size();
for (int i = 0; i < qSize; i++) {
TreeNode *frontNode = q.front();
q.pop();
if (frontNode->right) {
q.push(frontNode->right);
}
if (frontNode->left) {
q.push(frontNode->left);
}
}
}
return res;
}
};