- 在浏览器中使用TensorFlow.js
魏铁锤chui
tensorflowjavascript人工智能
TensorFlow.js简介介绍光学字符识别(OCR)是指能够从图像或文档中捕获文本元素,并将其转换为机器可读的文本格式的技术。如果您想了解更多关于这个主题的内容,本文是一个很好的介绍。TensorFlow.js是一个库,用于使用JavaScript开发和训练机器学习模型,并将其部署在浏览器中或Node.js上。您可以使用现有模型、转换PythonTensorFlow模型、使用迁移学习用您自己的
- JVM垃圾回收调优知识点整理
图灵农场
个人笔记jvm
目录1、JVM内存模型1.2、堆及垃圾回收1.3、JVM参数设置经验:1.4、对象逃逸分析:2、类加载2.1、类加载过程:2.2、类加载器分类:2.3、类加载机制:2.4、打破双亲委派机制:3、JVM内存分配机制4、如何判断对象可以被回收4.1、引用计数法4.2、可达性分析算法4.3、常见引用类型4.4、finalize()方法最终判定对象是否存活4.5、如何判断一个类是无用的类5、垃圾收集算法5
- 【大模型面试必备】130道大模型问题深度解析,附详细答案,非常详细收藏这一篇就够了!
大模型学习
大模型架构数据库langchain人工智能面试
Attention1、讲讲对Attention的理解?Attention机制是一种在处理时序相关问题的时候常用的技术,*主要用于处理序列数据。*核心思想:在处理序列数据时,网络应该更关注输入中的重要部分,而忽略不重要的部分,它通过学习不同部分的权重,将输入的序列中的重要部分显式地加权,从而使得模型可以更好地关注与输出有关的信息。在序列建模任务中,比如机器翻译、文本摘要、语言理解等,输入序列的不同部
- python+unity实现数字人跟随运动
雨轩智能
python智能算法pythonUnity数字人
效果如下设计思路1python通过摄像头提取人物肢体关键点信息2通过UDP将获取到人体信息发送给Unity3unity将获取的的人物信息进行解析4将解析的数据赋值给模型骨架代码获取
- 对话式AI助手的巅峰对决:ChatGPT与文心一言的实用价值探讨
酷钉
chatgpt人工智能
随着人工智能技术的发展,对话式AI助手逐渐成为了人们生活中的一部分。其中,ChatGPT和文心一言更是备受关注的两款对话式AI助手。本文将探讨这两款AI助手的实用价值,并通过案例和数据的方式进行分析。一、ChatGPT的实用价值跨语言交流ChatGPT是一款能够进行跨语言交流的对话式AI助手。据统计,ChatGPT支持的语言数量超过100种,用户可以通过它轻松地与不同国家和地区的人进行交流。例如,
- 网络编程(17)——asio多线程模型IOThreadPool
爱吃土豆zzz
网络编程单例模式c++网络编程asio
十七、day17之前我们介绍了IOServicePool的方式,一个IOServicePool开启n个线程和n个iocontext,每个线程内独立运行iocontext,各个iocontext监听各自绑定的socket是否就绪,如果就绪就在各自线程里触发回调函数。为避免线程安全问题,我们将网络数据封装为逻辑包投递给逻辑系统,逻辑系统有一个单独线程处理,这样将网络IO和逻辑处理解耦合,极大的提高了服
- Unity Face Capture面部捕捉方案教程——利用官方教程绑定人物模型
风带我去何处
unity游戏引擎
一.准备工作找到我们要绑定的人物(注意这个人物必须要有脸部表情的蒙皮和骨骼)二.导入模型打开上一篇文章中我们新创建的场景把我们要绑定的人物模型导入到FaceCaptureSample官方案例场景中导入模型折后在库中选中人物模型在右侧出现的属性栏中将读写打开(如果没有这一步你可以省略)将人物模型改为人形将人物模型导入到场景中(导入模型可能会遇到一些问题我们在这里不讨论请另行查阅)这个是导入完成后的场
- 微信小程序|流浪动物救助小程序的设计与实现
qq_469603589
微信小程序小程序微信小程序
作者主页:编程指南针作者简介:Java领域优质创作者、CSDN博客专家、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、腾讯课堂常驻讲师主要内容:Java项目、Python项目、前端项目、人工智能与大数据、简历模板、学习资料、面试题库、技术互助收藏点赞不迷路关注作者有好处文末获取源码项目编号:L-BS-XZBS-30一,环境介绍语言环境:Java:jdk1
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- 基于uniapp微信小程+SpringBoot+Vue的流浪动物救助领养系统设计和实现(源码+论文+部署讲解等)
博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等
- Java线程揭秘:守护线程与用户线程的深入解析及实战
橘子-青衫
后端开发java开发语言后端算法性能优化
目录前言一、守护线程与用户线程的定义、设置及其关键差异1.定义与设置2.守护线程与用户线程的区别二、实战案例解析1.代码案例:守护线程的设置与运行2.代码案例:用户线程与守护线程的交互三、如何识别守护线程总结前言在Java编程的并发与多线程领域,深入理解线程的类型是构建高效、可靠应用程序的重要基石。Java的多线程模型因其灵活性和广泛的应用场景,在高性能服务器开发、并发处理系统以及复杂业务逻辑实现
- 30、法律案例的关联检索:提升法律实践的信息处理能力
android
法律案例关联检索信息处理
法律案例的关联检索:提升法律实践的信息处理能力1.引言在当今信息爆炸的时代,法律从业者面临着前所未有的挑战。大量的法律案例、法规和判例使得信息检索变得复杂而耗时。为了提高工作效率和决策质量,法律从业者迫切需要一种高效的工具来发现和检索相互关联的法律案例。本文将探讨如何通过先进的信息检索技术和算法来实现这一点。2.关联模型关联模型是法律案例关联检索的核心。为了确定案例之间的关联性,通常采用以下几种模
- 软件工程中Selenium的关键字驱动测试
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构软件工程selenium测试工具ai
软件工程中Selenium的关键字驱动测试关键词:Selenium、关键字驱动测试、自动化测试、测试框架、Web测试、测试脚本、测试维护摘要:本文深入探讨了在软件工程中使用Selenium实现关键字驱动测试的方法论和实践。文章从基本概念入手,详细解析了关键字驱动测试的核心原理和架构设计,通过Python代码示例展示了具体实现方式,并提供了数学模型分析测试覆盖率。此外,文章还包含了实际项目案例、工具
- 由浅入深:Python异步函数调用的艺术 - 从脚本到API架构设计
Ven%
pythonpython网络开发语言
文章目录引言:异步编程的新范式一、基础篇:事件循环中的直接调用1.1理解异步执行模型1.2简单调用示例1.3关键注意事项二、进阶篇:API接口中的异步调用2.1为什么需要API封装?2.2FastAPI实现示例2.3调用对比分析三、架构篇:分层设计的最佳实践3.1问题:紧耦合的陷阱3.2解决方案:三层架构设计3.2.1核心业务层(core/retrieval.py)3.2.2API接口层(api/
- 【数据标注师】语音校对标注
试着
数据标注师语音识别人工智能数据标注师语音校对标注
目录一、语音校对标注的核心使命**任务本质****四大核心价值**二、专业工作环境配置**硬件黄金组合****软件栈深度掌握**三、九大错误类型识别与修正**语音校对错误矩阵**四、专业校对工作流**五步双轨校对法****复杂场景攻坚策略五、质量与效率的平衡术**质检三维度****效率提升方案**六、领域专业化路径**医疗语音校对专精****法律语音校对专精**七、职业进阶方向**能力跃迁模型**
- 云原生函数计算:冷启动优化全攻略
AI云原生与云计算技术学院
云原生ai
云原生函数计算:冷启动优化全攻略关键词:云原生,函数计算,Serverless,冷启动,性能优化,资源调度,运行时优化摘要:本文深入解析云原生函数计算场景下的冷启动问题,系统阐述冷启动的技术原理、核心影响因素及全链路优化策略。通过对函数计算架构的深度拆解,结合具体代码实现和数学模型分析,提供从基础设施层到应用层的端到端优化方案。涵盖轻量级运行时设计、依赖管理优化、资源预分配策略等关键技术点,并通过
- 9.5 6B参数吊打百亿?清华开源VisualGLM-6B多模态模型实战全解
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力开源机器学习人工智能语言模型langchain
6B参数吊打百亿?清华开源VisualGLM-6B多模态模型实战全解初探多模态VisualGLM-6B1.多模态时代的挑战与突破在通用大模型向多模态演进的过程中,如何实现跨模态的语义对齐是核心挑战。VisualGLM-6B作为GLM家族首个开源多模态模型,通过创新的跨模态连接架构,在参数量仅6B级别下实现了媲美百亿级模型的图文理解能力。
- [2025CVPR]DE-GANs:一种高效的生成对抗网络
清风AI
深度学习算法详解及代码复现生成对抗网络人工智能神经网络
目录引言:数据高效GAN的困境核心原理:动态质量筛选机制1.判别器拒绝采样(DRS)的再思考2.质量感知动态拒绝公式(1)质量感知阶段(2)动态拒绝阶段模型架构:轻量化设计技术突破:三大创新点1.首创训练阶段DRS2.动态拒绝机制3.质量重加权策略实验验证:全面性能提升1.数据集与指标2.对比实验结果(1)低样本数据集(2)FFHQ数据集代码解析:关键实现细节对比结果:全面超越现有方法1.低样本数
- Dimba: Transformer-Mamba Diffusion Models————3 Methodology
图解图片中的每个模块详解1.文本输入(Text)描述:输入的文本描述了一个具有具体特征的场景。功能:提供关于要生成图像的详细信息。2.T5模型(TexttoFeature)描述:使用T5模型将文本转换为特征向量。功能:提取文本中的语义信息,为后续的图像生成提供条件。3.图像输入(Image)描述:输入图像通过变分自编码器(VAE)编码器处理。功能:将图像转换为潜在表示,用于添加噪声并进行扩散过程。
- Nacos与Eureka、ZooKeeper的区别?
leijmdas
java
Nacos、Eureka和ZooKeeper是分布式系统中常用的服务注册与发现组件,但它们在功能定位、一致性模型、性能特性及适用场景上存在显著差异。以下从核心维度进行对比分析:一、功能定位对比特性NacosEurekaZooKeeper核心功能服务注册发现+动态配置管理仅服务注册发现分布式协调(含服务发现)健康检查多模式(心跳+服务端主动探测)仅客户端心跳临时节点会话机制管理界面功能丰富,支持配置
- LlamaIndex + 智谱大模型GLM 实现智能代理(Agent)
不吃辣的陈
人工智能pythonlangchainfaiss自然语言处理
LlamaIndex+智谱大模型GLM实现智能代理(Agent)文章目录LlamaIndex+智谱大模型GLM实现智能代理(Agent)前言一、模型加载二、向量数据库加载1.向量库加载2.向量库生成三、方法创建1.创建FAISS查询引擎适配器(本地外挂知识库查询)2.数学计算工具函数(计算器)3.WebSearch工具(网络搜索)4.手机号码归属地信息(号码归属地工具)四、FunctionTool
- 计算机专业毕业设计选题指南(2025创新版)
程序员小天00
课程设计毕业设计小程序pythoneclipsejava
计算机专业毕业设计选题指南(2025创新版)一、选题方向全景图(按技术维度划分)智能服务系统开发技术架构:SpringBoot+Vue3+MySQL/MongoDB典型场景:●智慧校园:实验室预约系统、学术成果可视化平台●医疗健康:电子病历智能分析系统、慢性病管理助手●城市治理:垃圾分类智能识别系统、交通拥堵预测模型创新点:融合OCR识别/NLP技术,实现无感化服务跨平台应用开发技术选型:Unia
- onnx模型部署 python_深度学习模型转换与部署那些事(含ONNX格式详细分析)
weixin_39759270
onnx模型部署python
背景深度学习模型在训练完成之后,部署并应用在生产环境的这一步至关重要,毕竟训练出来的模型不能只接受一些公开数据集和榜单的检验,还需要在真正的业务场景下创造价值,不能只是为了PR而躺在实验机器上在现有条件下,一般涉及到模型的部署就要涉及到模型的转换,而转换的过程也是随着对应平台的不同而不同,一般工程师接触到的平台分为GPU云平台、手机和其他嵌入式设备对于GPU云平台来说,在上面部署本应该是最轻松的事
- 如何禁止GPTBot等爬虫爬取网站内容:保护数据安全的实用指南
淮橘√
人工智能
引言随着人工智能技术的快速发展,网络爬虫(如OpenAI的GPTBot、GoogleBot、Anthropic的ClaudeBot等)被广泛用于抓取网站数据以训练AI模型或索引内容。然而,部分网站管理员可能不希望自己的内容被爬虫抓取,原因包括保护原创内容、降低服务器负载或防止数据被滥用。一、为什么需要禁止爬虫?网络爬虫可能带来以下问题:内容盗用风险:原创内容可能被AI模型或其他服务未经授权使用。服
- 动态脱敏引擎设计:基于上下文感知的字段级权限控制模型
在数据流通日益频繁的数字化时代,敏感数据泄露风险持续攀升。传统脱敏技术多采用静态规则,难以适应复杂多变的业务场景,导致数据保护与业务需求间矛盾突出。动态脱敏引擎基于上下文感知的字段级权限控制模型,通过实时分析数据访问场景,实现对敏感字段的精细化权限管理与动态脱敏处理,为数据安全流通提供有效保障。一、核心痛点与需求分析1.1传统脱敏技术的局限性静态脱敏规则难以应对动态业务需求,存在过度脱敏影响数据可
- 华为认证系统备考指南全解析
噗老师
华为认证ITHCIEHCIAHCIP备考备考攻略
Hello!大家好,小编是一名专注IT领域的资深探索家。都知道华为认证就像技术江湖的"段位证书"!从HCIA的入门小白到HCIE的架构大神,这套认证体系藏着清晰的成长路径。今天就带你拆解备考密码,把考纲变地图、把难点变台阶,轻松解锁技术进阶新姿势一、华为认证体系:技术进阶的阶梯华为认证构建**“HCIA→HCIP→HCIE”三级能力模型**,覆盖数据通信(Datacom)、云计算(Cloud)、网
- 从零开始理解Transformer模型:架构与应用
淮橘√
transformer深度学习人工智能
引言近年来,Transformer模型席卷了自然语言处理(NLP)领域,成为了深度学习中的明星架构。从Google提出的《AttentionisAllYouNeed》论文到ChatGPT、BERT等模型的广泛应用,Transformer以其强大的性能和灵活性改变了我们对序列建模的认知。本文将从零开始,深入浅出地解析Transformer的架构原理、核心组件以及实际应用场景,并提供一个简单的代码示例
- java opencv 数字识别算法_[机器学习]基于OpenCV实现最简单的数字识别
后期小雨
javaopencv数字识别算法
本文将基于OpenCV实现简单的数字识别。这里以游戏AngryBirds为例,通过以下几个主要步骤对其中右上角的分数部分进行自动识别。1.学习分类器根据训练样本,选取模型训练产生数字分类器。这里的样本可以是通用的数字样本库(如NIST等),也可以是针对应用场景而制作的专门训练样本。前者优在泛化性,后者强在准确率,当然常用做法是将这两者结合,即在通用数字库基础上做修改。另外这里由于模式并不复杂,计算
- MVVM前端开发模型,怎么快速定位问题
MVVM(Model-View-ViewModel)是一种常见的前端开发架构,主要用于分离应用的逻辑和UI,提升代码的可维护性和可测试性。在MVVM中,Model代表数据层,View代表用户界面层,而ViewModel是连接两者的中介,负责处理UI和数据之间的交互。在开发中,尤其是调试和快速定位问题时,可能会遇到一些挑战。以下是一些基于MVVM前端架构的调试技巧和方法:1.明确问题的层次首先,要清
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Retrieval组件)Text Splitters详解 ?
【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Retrieval组件)TextSplitters详解?【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Retrieval组件)TextSplitters详解?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Re
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin