【数据处理】Python:实现求条件分布函数 | 求平均值方差和协方差 | 求函数函数期望值的函数 | 概率论

   猛戳订阅!  《一起玩蛇》

【数据处理】Python:实现求条件分布函数 | 求平均值方差和协方差 | 求函数函数期望值的函数 | 概率论_第1张图片

写在前面:本章我们将通过 Python 手动实现条件分布函数的计算,实现求平均值,方差和协方差函数,实现求函数期望值的函数。部署的测试代码放到文后了,运行所需环境 python version >= 3.6,numpy >= 1.15,nltk >= 3.4,tqdm >= 4.24.0,scikit-learn >= 0.22。

相关链接:【概率论】Python:实现求联合分布函数 | 求边缘分布函数

本章目录:

0x00 实现求条件分布的函数(Conditional distribution)

0x01 实现求平均值, 方差和协方差的函数(Mean, Variance, Covariance)

0x02 实现求函数期望值的函数(Expected Value of a Function)

0x04 提供测试用例


0x00 实现求条件分布的函数(Conditional distribution)

实现 conditional_distribution_of_word_counts 函数,接收 Point 和 Pmarginal 并求出结果。

请完成下面的代码,计算条件分布函数 (Joint distribution),将结果存放到 Pcond 中并返回:

def conditional_distribution_of_word_counts(Pjoint, Pmarginal):
    """
    Parameters:
    Pjoint (numpy array) - Pjoint[m,n] = P(X0=m,X1=n), where
      X0 is the number of times that word0 occurs in a given text,
      X1 is the number of times that word1 occurs in the same text.
    Pmarginal (numpy array) - Pmarginal[m] = P(X0=m)

    Outputs:
    Pcond (numpy array) - Pcond[m,n] = P(X1=n|X0=m)
    """
    raise RuntimeError("You need to write this part!")
    return Pcond

​

输出结果演示:

Problem3. Conditional distribution:
[[0.97177419 0.02419355 0.00201613 0.        0.00201613]
 [1.         0.         0.         0.        0.        ]
 [       nan        nan        nan       nan        nan]
 [       nan        nan        nan       nan        nan]
 [1.         0.         0.         0.        0.        ]]

提示:条件分布 (Conditional distribution) 公式如下:

代码演示:conditional_distribution_of_word_counts 的实现

def conditional_distribution_of_word_counts(Pjoint, Pmarginal):
    Pcond = Pjoint / Pmarginal[:, np.newaxis]  # 根据公式即可算出条件分布
    return Pcond

值得注意的是,如果分母 Pmarginal 中的某些元素为零可能会导致报错问题。这导致除法结果中出现了 NaN(Not a Number)。在计算条件概率分布时,如果边缘分布中某个值为零,那么条件概率无法得到合理的定义。为了解决这个问题,我们可以在计算 Pmarginal 时,将所有零元素替换为一个非零的很小的数,例如 1e-10。

0x01 实现求平均值, 方差和协方差的函数(Mean, Variance, Covariance)

使用英文文章中最常出现的 a, the 等单词求出其联合分布 (Pathe) 和边缘分布 (Pthe)。

Pathe 和 Pthe 在 reader.py 中已经定义好了,不需要我们去实现,具体代码文末可以查阅。

这里需要我们使用概率分布,编写求平均值、方差和协方差的函数:

  • 函数 mean_from_distribution 和 variance_from_distribution 输入概率分布  中计算概率变量  的平均和方差并返回。平均值和方差保留小数点前三位即可。
  • 函数 convariance_from_distribution 计算概率分布  中的概率变量  和概率变量  的协方差并返回,同样保留小数点前三位即可。

def mean_from_distribution(P):
    """
    Parameters:
    P (numpy array) - P[n] = P(X=n)

    Outputs:
    mu (float) - the mean of X
    """
    raise RuntimeError("You need to write this part!")
    return mu


def variance_from_distribution(P):
    """
    Parameters:
    P (numpy array) - P[n] = P(X=n)

    Outputs:
    var (float) - the variance of X
    """
    raise RuntimeError("You need to write this part!")
    return var


def covariance_from_distribution(P):
    """
    Parameters:
    P (numpy array) - P[m,n] = P(X0=m,X1=n)

    Outputs:
    covar (float) - the covariance of X0 and X1
    """
    raise RuntimeError("You need to write this part!")
    return covar

输出结果演示:

Problem4-1. Mean from distribution:
4.432
Problem4-2. Variance from distribution:
41.601
Problem4-3. Convariance from distribution:
9.235

提示:求平均值、方差和协方差的公式如下

代码演示:

def mean_from_distribution(P):
    mu = np.sum(    # Σ
        np.arange(len(P)) * P
    )

    return round(mu, 3)  # 保留三位小数

def variance_from_distribution(P):
    mu = mean_from_distribution(P)
    var = np.sum(    # Σ
        (np.arange(len(P)) - mu) ** 2 * P
    )

    return round(var, 3)   # 保留三位小数


def covariance_from_distribution(P):
    m, n = P.shape
    mu_X0 = mean_from_distribution(np.sum(P, axis=1))
    mu_X1 = mean_from_distribution(np.sum(P, axis=0))
    covar = np.sum(   # Σ
        (np.arange(m)[:, np.newaxis] - mu_X0) * (np.arange(n) - mu_X1) * P
    )

    return round(covar, 3)

0x02 实现求函数期望值的函数(Expected Value of a Function)

实现 expectation_of_a_function 函数,计算概率函数  的  。

其中  为联合分布, 为两个实数的输入,以   的形式输出。

函数  已在 reader.py 中定义,你只需要计算  的值并保留后三位小数返回即可。

def expectation_of_a_function(P, f):
    """
    Parameters:
    P (numpy array) - joint distribution, P[m,n] = P(X0=m,X1=n)
    f (function) - f should be a function that takes two
       real-valued inputs, x0 and x1.  The output, z=f(x0,x1),
       must be a real number for all values of (x0,x1)
       such that P(X0=x0,X1=x1) is nonzero.

    Output:
    expected (float) - the expected value, E[f(X0,X1)]
    """
    raise RuntimeError("You need to write this part!")
    return expected

输出结果演示:

Problem5. Expectation of a funciton:
1.772

代码演示:expectation_of_a_function 函数的实现

def expectation_of_a_function(P, f):
    """
    Parameters:
    P (numpy array) - joint distribution, P[m,n] = P(X0=m,X1=n)
    f (function) - f should be a function that takes two
       real-valued inputs, x0 and x1.  The output, z=f(x0,x1),
       must be a real number for all values of (x0,x1)
       such that P(X0=x0,X1=x1) is nonzero.

    Output:
    expected (float) - the expected value, E[f(X0,X1)]
    """
    m, n = P.shape
    E = 0.0

    for x0 in range(m):
        for x1 in range(n):
            E += f(x0, x1) * P[x0, x1]

    return round(E, 3)   # 保留三位小数

0x04 提供测试用例

这是一个处理文本数据的项目,测试用例为 500 封电子邮件的数据(txt 的格式文件):

【数据处理】Python:实现求条件分布函数 | 求平均值方差和协方差 | 求函数函数期望值的函数 | 概率论_第2张图片

所需环境:

- python version >= 3.6
- numpy >= 1.15
- nltk >= 3.4
- tqdm >= 4.24.0
- scikit-learn >= 0.22

nltk 是 Natural Language Toolkit 的缩写,是一个用于处理人类语言数据(文本)的 Python 库。nltk 提供了许多工具和资源,用于文本处理和 NLP,PorterStemmer 用来提取词干,用于将单词转换为它们的基本形式,通常是去除单词的词缀。 RegexpTokenizer 是基于正则表达式的分词器,用于将文本分割成单词。

data_load.py:用于加载文本数据

import os
import numpy as np
from nltk.stem.porter import PorterStemmer
from nltk.tokenize import RegexpTokenizer
from tqdm import tqdm

porter_stemmer = PorterStemmer()
tokenizer = RegexpTokenizer(r"\w+")
bad_words = {"aed", "oed", "eed"}  # these words fail in nltk stemmer algorithm


def loadFile(filename, stemming, lower_case):
    """
    Load a file, and returns a list of words.

    Parameters:
    filename (str): the directory containing the data
    stemming (bool): if True, use NLTK's stemmer to remove suffixes
    lower_case (bool): if True, convert letters to lowercase

    Output:
    x (list): x[n] is the n'th word in the file
    """
    text = []
    with open(filename, "rb") as f:
        for line in f:
            if lower_case:
                line = line.decode(errors="ignore").lower()
                text += tokenizer.tokenize(line)
            else:
                text += tokenizer.tokenize(line.decode(errors="ignore"))
    if stemming:
        for i in range(len(text)):
            if text[i] in bad_words:
                continue
            text[i] = porter_stemmer.stem(text[i])
    return text


def loadDir(dirname, stemming, lower_case, use_tqdm=True):
    """
    Loads the files in the folder and returns a
    list of lists of words from the text in each file.

    Parameters:
    name (str): the directory containing the data
    stemming (bool): if True, use NLTK's stemmer to remove suffixes
    lower_case (bool): if True, convert letters to lowercase
    use_tqdm (bool, default:True): if True, use tqdm to show status bar

    Output:
    texts (list of lists): texts[m][n] is the n'th word in the m'th email
    count (int): number of files loaded
    """
    texts = []
    count = 0
    if use_tqdm:
        for f in tqdm(sorted(os.listdir(dirname))):
            texts.append(loadFile(os.path.join(dirname, f), stemming, lower_case))
            count = count + 1
    else:
        for f in sorted(os.listdir(dirname)):
            texts.append(loadFile(os.path.join(dirname, f), stemming, lower_case))
            count = count + 1
    return texts, count

 reader.py:将读取数据并打印

import data_load, hw4, importlib
import numpy as np

if __name__ == "__main__":
    texts, count = data_load.loadDir("data", False, False)

    importlib.reload(hw4)
    Pjoint = hw4.joint_distribution_of_word_counts(texts, "mr", "company")
    print("Problem1. Joint distribution:")
    print(Pjoint)
    print("---------------------------------------------")

    P0 = hw4.marginal_distribution_of_word_counts(Pjoint, 0)
    P1 = hw4.marginal_distribution_of_word_counts(Pjoint, 1)
    print("Problem2. Marginal distribution:")
    print("P0:", P0)
    print("P1:", P1)
    print("---------------------------------------------")

    Pcond = hw4.conditional_distribution_of_word_counts(Pjoint, P0)
    print("Problem3. Conditional distribution:")
    print(Pcond)
    print("---------------------------------------------")

    Pathe = hw4.joint_distribution_of_word_counts(texts, "a", "the")
    Pthe = hw4.marginal_distribution_of_word_counts(Pathe, 1)

    mu_the = hw4.mean_from_distribution(Pthe)
    print("Problem4-1. Mean from distribution:")
    print(mu_the)

    var_the = hw4.variance_from_distribution(Pthe)
    print("Problem4-2. Variance from distribution:")
    print(var_the)

    covar_a_the = hw4.covariance_from_distribution(Pathe)
    print("Problem4-3. Covariance from distribution:")
    print(covar_a_the)
    print("---------------------------------------------")

    def f(x0, x1):
        return np.log(x0 + 1) + np.log(x1 + 1)

    expected = hw4.expectation_of_a_function(Pathe, f)
    print("Problem5. Expectation of a function:")
    print(expected)

 [ 笔者 ]   王亦优
 [ 更新 ]   2023.11.15
❌ [ 勘误 ]   /* 暂无 */
 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,
              本人也很想知道这些错误,恳望读者批评指正!

参考资料 

C++reference[EB/OL]. []. http://www.cplusplus.com/reference/.

Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

百度百科[EB/OL]. []. https://baike.baidu.com/.

比特科技. C++[EB/OL]. 2021[2021.8.31]. 

你可能感兴趣的:(python,概率论,开发语言,数据处理)