- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- MNIST Examples for GGML - Convolutional network
Yongqiang Cheng
ggml-llama.cpp-whisper.cppGGMLMNISTExamplesConvolutionalnetwork
MNISTExamplesforGGML-Convolutionalnetwork1.Build2.MNISTExamplesforGGML2.1.Obtainingthedata2.2.Convolutionalnetwork2.2.1.TotrainaconvolutionalnetworkusingTensorFlow2.2.2.ToevaluatethemodelontheCPUusing
- 磨人小妖精-tensorflow之removed in a future version
凯旋的铁铁
磨人的小妖精pythontensorflow
TensorFlow1.14版本TensorFlow使用五个不同级别的日志消息。按照上升的顺序,它们是DEBUG,INFO,WARN,ERROR和FATAL。当您在任何这些级别配置日志记录时,TensorFlow将输出与该级别相对应的所有日志消息以及所有级别的严重级别。例如,如果设置了ERROR的日志记录级别,则会收到包含ERROR和FATAL消息的日志输出,如果设置了一个DEBUG级别,则会从所
- 【Python深入浅出㊸】解锁Python3中的TensorFlow:开启深度学习之旅
奔跑吧邓邓子
Python深入浅出python深度学习tensorflow
目录一、TensorFlow简介1.1定义与背景1.2特点二、Python3与TensorFlow的关系2.1版本对应2.2为何选择Python3三、安装TensorFlow3.1安装步骤3.2验证安装四、TensorFlow基本概念与使用方法4.1计算图(Graph)4.2会话(Session)4.3张量(Tensor)4.4变量(Variable)4.5占位符(Placeholder)五、Te
- keras实现TCN网络层
谦虚且进步
深度学习预测keras人工智能深度学习
keras实现TCN网络层,keras3.0可用。fromkeras.layersimportLambda,Dense,Layer,Conv1DimporttensorflowastfclassTCNCell(Layer):"""sumary_line:Chinese:让输入的时间序列[bs,seql,dim]提升kernel_size倍的感受野English:Doublethereceptive
- Windows 系统中,可以通过命令提示符 (cmd) 来查看 Python 的安装路径
KillFuckBugs
windowspython开发语言
在Windows系统中,可以通过命令提示符(cmd)来查看Python的安装路径。方法一:直接在cmd中运行Python1.打开cmd:按下Win+R组合键,输入"cmd"并按下Enter键。2.输入Python命令:在打开的命令提示符窗口中,直接输入python并按下Enter键。3.查看路径:如果Python安装正确,您会进入Python的交互式环境。在其中输入importsys;print(
- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- 关于pip Install与conda install
ClaNNEd@
DeepLearningpipconda
conda解决依赖的问题很弱,环境包多了以后经常要解决依赖几分钟到十几分钟。我个人感觉比较好的实践是conda创建虚拟环境,装torch/tensorflow等比较难装的包,基础环境配好以后,后面装包一律用pip。conda,pip,anaconda,miniconda的区别网页https://www.quora.com/What-is-the-comparison-among-conda-vs-
- python学习环境
HelloWorld!
python使用python
python学习环境python的安装Anaconda的安装Anaconda虚拟环境pythonIDE的选择pycharm项目的环境变量选择从这篇文章开始,记录python学习的过程。本篇从python学习的环境开始展开。python的安装我主要是在windows环境下进行python3的学习。我所了解到主要有两种常见的python安装方法。直接在python官方网站上下载python,然后进行安
- 基于华为自研NPU Ascend 910的TensorFlow 1.x训练脚本迁移和使能混合精度记录
Tianyi Li 1997
华为云tensorflow华为人工智能深度学习python
简介基于TesorFlow1.x以Sess.run形式搭建入门级——手写数字分类网络,并迁移到华为自研NPUAscend910,同时使能混合精度。硬件介绍华为自研NPUAscend910,即昇腾910AI处理器(简称NPU),根据官方介绍,是在2019年发布的人工智能(AI)专用的神经网络处理器,其算力高达256T,最新款算力高达310T,是业界主流芯片算力的2倍。当前业界大多数训练脚本基于Ten
- PyTorch 与 TensorFlow 的深度解析:全面比较两大深度学习框架,助你选择最适合的工具
BuluAI
深度学习pytorchtensorflow
在人工智能的浪潮中,深度学习框架成为了开发者们的得力助手。PyTorch和TensorFlow作为其中的佼佼者,各自拥有庞大的用户群体和强大的社区支持。但它们在设计理念、使用体验和应用场景上有着显著的差异。今天,我们就来深入探讨这两个框架的特点,帮助你在项目中做出更明智的选择。计算图的构建方式PyTorch的动态图机制是其一大特色。在PyTorch中,计算图是在程序运行时动态构建的,这使得开发者可
- 25、深度学习-自学之路-卷积神经网络基于MNIST数据集的程序展示
小宇爱
深度学习-自学之路深度学习cnn人工智能
importkeras#添加Keraskuimportsys,numpyasnpfromkeras.utilsimportnp_utilsimportosfromkeras.datasetsimportmnistprint("licheng:"+"20"+'\n')np.random.seed(1)(x_train,y_train),(x_test,y_test)=mnist.load_data(
- 【深度学习入门实战】基于Keras的手写数字识别实战(附完整可视化分析)
机器学习司猫白
深度学习深度学习keras人工智能机器学习python
本人主页:机器学习司猫白ok,话不多说,我们进入正题吧项目概述本案例使用经典的MNIST手写数字数据集,通过Keras构建全连接神经网络,实现0-9数字的分类识别。文章将包含:关键概念图解完整实现代码训练过程可视化模型效果深度分析环境准备importnumpyasnpimportmatplotlib.pyplotaspltfromtensorflowimportkerasfromtensorflo
- Windows下安装CPU用的Tensorflow
Coder LM Wang
Python
刚在电脑上安装了Tensorflow,还是碰到了一些麻烦,记录一下:很多教程是介绍怎么在Linux平台下安装的,或者是Windows平台下GPU用的,很可惜,这些教程对我来说太麻烦了。安装步骤:1)安装Python。版本:python-3.6.4-amd64.exe。2)cmd,命令行输入:python,查看Python版本号,以验证Python是否安装成功了。3)继续在命令行输入:pipinst
- conda 装tensorboardx_【工欲善其事】TensorboardX的使用
weixin_39719042
conda装tensorboardx
“我不喜欢Tensorflow,但这并不妨碍我使用tensorboard”上一篇文章(https://zhuanlan.zhihu.com/p/39849027),和大家简单地聊了一下关于如何在训练过程中有序地组织log问题。今天,想和大家简单地谈谈tensorboard的使用。经过社区的努力,目前PyTorch也可以使用tensorboard了。在训练过程中实时地观察loss/accuracy曲
- 深度学习-情感分析
小赖同学啊
人工智能深度学习人工智能
以下将分别使用PyTorch和TensorFlow框架实现基于深度学习的情感分析,这里以影评的情感分析为例,数据集使用IMDB影评数据集。使用PyTorch实现1.安装必要的库pipinstalltorchtorchtextspacypython-mspacydownloaden_core_web_sm2.代码实现importtorchimporttorch.nnasnnimporttorch.o
- 神经网络常见激活函数 9-CELU函数
亲持红叶
神经网络常见激活函数深度学习机器学习人工智能数学建模神经网络python
文章目录CELU函数+导函数函数和导函数图像优缺点pytorch中的CELU函数tensorflow中的CELU函数CELU连续可微指数线性单元:CELU(ContinuouslyDifferentiableExponentialLinearUnit),是一种连续可导的激活函数,结合了ELU和ReLU的特点,旨在解决ELU在某些情况下的梯度问题。函数+导函数CELU函数CELU(x)={xx≥0α
- 深度学习 视频推荐
小赖同学啊
人工智能深度学习音视频人工智能
以下为你呈现一个基于深度学习实现视频推荐的简化代码示例。这里我们使用的是协同过滤思想结合神经网络的方式,借助TensorFlow和Keras库来构建模型。在这个示例中,假设已有用户对视频的评分数据,目标是预测用户对未评分视频的评分,进而为用户推荐可能感兴趣的视频。1.环境准备要确保你已经安装了必要的库,如numpy、pandas、tensorflow等,可以使用以下命令进行安装:pipinstal
- Python环境搭建与量化交易开发入门指南
量化投资技术
量化科普Python量化miniQMTQMT量化交易量化投资
Python环境搭建与量化交易开发入门指南在量化交易领域,Python因其强大的数据处理能力和丰富的库支持而成为首选编程语言。本文将指导您如何在本地搭建一个适合量化交易的Python环境,并介绍一些常用的代码编辑器和工具。《QMT开通规则分享》更多内容,知识星球搜索:数据与交易Python安装方式一:官网安装(推荐)首先,访问Python官网下载适合的版本。由于xtquant库目前最高支持到Pyt
- 【Python自动化测试25】接口自动化测试实战五_数据库断言、接口关联及相关管理优化
萌笑天
Python自动化测试python自动化开发语言自动化测试软件测试
文章目录一、前言二、校验数据库、接口关联及项目优化一、前言 本文章主要会讲解接口自动化测试中Python的数据库断言以及相关的接口关联的测试,除此之外下方有系列文章的传送门,还在持续更新中,感兴趣的小伙伴也可以前往查看,话不多说,让我们一起看看吧~系列文章: 系列文章1:【Python自动化测试1】遇见Python之美 系列文章2:【Python自动化测试2】Python安装配置及PyCha
- **LLAMA-CPP-PYTHON 安装与配置完全指南**
童瑶知Valda
LLAMA-CPP-PYTHON安装与配置完全指南llama-cpp-pythonPythonbindingsforllama.cpp项目地址:https://gitcode.com/gh_mirrors/ll/llama-cpp-python项目基础介绍及编程语言LLAMA-CPP-PYTHON是一个为Ggerganov开发的llama.cpp库提供简单Python绑定的开源项目。它旨在让开发者
- excel如何拆分为1000行一个的文件
扎量丙不要犟
excel
方法一:使用hpctb打开文件,点“行分表”就行了。如图:一步完成,不需要安装环境,也不需要专业知识,也不需要“神”一样的ai。方法二:使用Python安装库(如未安装)pipinstallpandasopenpyxlPython脚本importpandasaspd#读取原文件df=pd.read_excel("input.xlsx")chunk_size=100#每个文件的行数#计算总块数并循环
- Python中LSTM算法的实现与应用
昊叔Crescdim
本文还有配套的精品资源,点击获取简介:本教程详细介绍了如何在Python编程环境下实现LSTM算法。首先解释了LSTM的工作原理,重点在于其门结构如何有效解决传统RNN的梯度问题,并通过控制信息流动以学习长期依赖。接着,教程以Keras库为例,逐步演示了安装库、数据预处理、模型构建、编译、训练、评估和预测等步骤。深入讲解了在序列数据处理如自然语言和时间序列预测任务中的实际应用,并提供了实践案例,强
- 神经网络常见激活函数 7-ELU函数
亲持红叶
神经网络常见激活函数深度学习机器学习人工智能数学建模神经网络
文章目录ELU函数+导函数函数和导函数图像优缺点pytorch中的ELU函数tensorflow中的ELU函数ELU指数线性单元:ELU(ExponentialLinearUnit)函数+导函数ELU函数ELU={xx>=0α(ex−1)x=0\\\alpha(e^x-1)\quad&x=0x=0αexx=0\\\alphae^x\quad&x=0x0,x,alpha*(np.exp(x)-1))
- (python)如何看自己安装的包的版本
9677
Pythonpython开发语言
linuxpiplist|grep"numpy\|scipy\|tensorflow\|keras"windows环境下piplist|findstr"numpyscipytensorflowkeras"输出numpy1.13.1scipy0.19.1tensorflow-cpu2.4.0tensorflow-estimator2.4.0tensorflow-gpu2.4.0
- 【野生动物识别系统】Python+深度学习+人工智能+卷积神经网络算法+TensorFlow+ResNet+图像识别
图像识别深度学习
一、介绍动物识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对18种动物数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张动物图片识别其名称。目前可识别的动物有:'乌龟','云豹','变色龙','壁虎','狞猫','狮子','猎豹','美洲狮','美洲虎','老虎','蜥蜴','
- 【蔬菜识别】Python+深度学习+CNN卷积神经网络算法+TensorFlow+人工智能+模型训练
图像识别深度学习人工智能
一、介绍蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆','大白菜','大葱','莲藕','菠菜','西红柿','韭菜','黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。二、系统效果图片展示三、演示视
- 基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
一、介绍蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)","毒鹅膏菌(Amanita)","牛肝菌(Boletus)","网状菌(Cortinarius)","毒镰孢(Entoloma)","湿孢菌(Hygrocybe)","乳菇(Lactarius)","红菇(Russula)","
- 深度学习-电商推荐
小赖同学啊
人工智能深度学习人工智能
下面为你介绍使用深度学习实现电商推荐系统的代码示例。我们将构建一个基于神经网络的简单推荐模型,以用户的历史购买行为和商品特征为基础,预测用户对商品的偏好。这里我们使用Python的TensorFlow和Keras库来实现。问题分析电商推荐系统的核心目标是根据用户的历史行为和商品特征,预测用户对未购买商品的喜好程度,从而为用户推荐可能感兴趣的商品。我们将通过构建一个神经网络模型,输入用户特征和商品特
- 【深度学习实战:kaggle自然场景的图像分类-----使用keras框架实现vgg16的迁移学习】
机器学习司猫白
深度学习分类keras
Hello大家好,今天和大家分享一个kaggle自然场景的图像分类的竞赛,使用的keras框架实现vgg16的迁移学习完成自然场景分类,对数据集感兴趣的同学可以在上方下载数据集。项目简介本次数据集来自kaggle,该数据集包括自然场景的图像。模型应该预测每个图像的正确标签。您的目标是实现分类问题的高精度。数据集train.csv-训练集test.csv-测试集SceneImages-图像文件夹训练
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo