- NotebookLM:Google 最新 AI 笔记助理解析与实战应用
赵大仁
人工智能技术大语言模型深度学习人工智能语言模型自然语言处理机器学习笔记
NotebookLM:Google最新AI笔记助理解析与实战应用在AI驱动的生产力工具不断进化的今天,Google推出的NotebookLM(NotebookLanguageModel)成为了一款备受关注的智能笔记助理。它结合了Google的大语言模型(LLM)能力,帮助用户更高效地整理、理解和生成知识内容。本文将全面解析NotebookLM的技术原理、核心功能、应用场景,并提供实际使用指南,帮助
- wow-agent---task4 MetaGPT初体验
Allen20000
pygamepython人工智能
先说坑:1.使用gitclone模式安装metagpt2.模型尽量使用在线模型或本地高参数模型。这里使用python3.10.11调试成功一,安装安装|MetaGPT,参考这里的以开发模型进行安装gitclonehttps://github.com/geekan/MetaGPT.gitcd/your/path/to/MetaGPTpipinstall-e.在下载后的目录中有一个config文件夹,
- 100.3 AI量化面试题:解释配对交易(Pairs Trading)的原理,并说明如何选择配对股票以及设计交易信号
AI量金术师
金融资产组合模型进化论人工智能金融机器学习python算法数学建模面试
目录0.承前1.配对交易基本原理1.1什么是配对交易1.2基本假设2.配对选择方法2.1相关性分析2.2协整性检验3.价差计算方法3.1简单价格比率3.2回归系数法4.交易信号设计4.1标准差方法4.2动态阈值方法5.风险管理5.1止损设计5.2仓位管理6.策略评估6.1回测框架6.2性能指标7.回答话术0.承前如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:0.金融资产组合模型
- 基于Spring Boot的校园志愿者服务网站
超级无敌暴龙战士塔塔开
Java课设与毕设资源springbootjava后端
文章目录项目介绍主要功能截图:登录个人中心志愿者管理活动类型管理活动报名管理活动心得部分代码展示设计总结项目获取方式作者主页:Java韩立简介:Java领域优质创作者、简历模板、学习资料、面试题库【关注我,都给你】文末获取源码联系项目介绍校园志愿者服务网站,java项目,springboot项目。eclipse和idea都能打开运行。推荐环境配置:eclipse/ideajdk1.8mavenmy
- 【识别代码截图OCR工具】
stsdddd
编程工具使用编辑器
以下是一些支持识别代码截图且能较好地保留代码结构、不出现乱码的OCR工具,以及它们的具体网站:1.Umi-OCR特点:免费开源的离线OCR软件,支持截图OCR、批量OCR、PDF识别等功能。能够识别不同排版的文字,并按正确顺序输出。适用平台:Windows。下载地址:蓝奏云:Umi-OCR_文字识别工具(国内推荐,免注册/无限速)。GitHub:https://github.com/hiroi-s
- 100.1 AI量化面试题:解释夏普比率(Sharpe Ratio)的计算方法及其在投资组合管理中的应用,并说明其局限性
AI量金术师
金融资产组合模型进化论人工智能金融python机器学习大数据
目录0.承前1.夏普比率的基本概念1.1定义与计算方法1.2实际计算示例2.在投资组合管理中的应用2.1投资组合选择2.2投资组合优化3.夏普比率的局限性3.1统计假设的限制3.2实践中的问题4.改进方案4.1替代指标4.2实践建议5.回答话术0.承前如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:0.金融资产组合模型进化全图鉴1.夏普比率的基本概念1.1定义与计算方法夏普比率是
- CNN的各种知识点(五):平均精度均值(mean Average Precision, mAP)
墨绿色的摆渡人
CNN的各种知识点零碎知识点cnn均值算法目标跟踪
平均精度均值(meanAveragePrecision,mAP)1.平均精度均值(meanAveragePrecision,mAP)概念:计算步骤:具体例子:重要说明:典型值范围:总结:好的,我将分两部分详细解答您的问题:1.平均精度均值(meanAveragePrecision,mAP)概念:mAP是目标检测中最常用的评估指标,综合反映模型在不同召回率下的平均精度表现。其核心是计算每个类别的平均
- 数据仓库之Kappa架构
james二次元
数据仓库数据仓库
Kappa架构是一种简化的数据处理架构,旨在处理实时数据流,解决传统Lambda架构中批处理和实时处理的复杂性。Kappa架构完全基于流处理,不区分批处理和实时处理,所有数据都是通过流处理系统进行处理。以下是对Kappa架构的详细介绍:核心概念数据流处理:所有数据都是以事件流的形式处理的,没有批处理的概念。数据流是连续的,实时的,不需要区分历史数据和实时数据。简化架构:通过统一的流处理框架简化数据
- SAP必须在2025年为客户提供云迁移的理由
syounger
SAP其他sap
2025年,SAP及其客户必须明确云迁移的商业案例,同时SAP也需要澄清其对“RisewithSAP”的立场。在本年度,SAP面临的挑战在于如何平衡其向云端过渡的战略与客户在迁移过程中遇到的实际困难。SAP的云战略与客户困惑随着SAP计划在2027年终止对传统本地ERP系统的支持,企业需要加快制定云迁移计划。然而,许多SAP客户仍在权衡是否能顺利迁移,以及是否有必要依赖SAP才能享受技术进步(如生
- 老玩童:互联网智慧助老平台——科技赋能银发族,开启智慧养老新生活
IT源码大师
科技生活
详细描述:1.引言随着全球老龄化社会的加速到来,老年人的生活质量和社会参与度成为社会关注的焦点。传统的养老服务模式往往存在资源不足、服务单一、效率低下等问题,难以满足老年人日益增长的多样化需求。基于互联网技术的智慧助老平台“老玩童”,通过整合物联网、大数据、人工智能等先进技术,构建了一个全方位、智能化、个性化的助老服务体系,为老年人及其家庭提供了全新的解决方案。本文将深入探讨这一平台的核心理念、技
- 交易系统:订单模型设计详解
java
大家好,我是汤师爷~订单模型作为整个交易系统的核心,支撑着所有交易环节。订单域核心概念模型如图所示,为订单核心概念模型。1、订单在实际交易业务处理中,订单会根据不同的业务规则(如店铺、收货地址、配送方式等)拆分成多个子订单,形成一个父订单对应多个子订单的结构。这种拆分机制便于后续的订单履约和商家结算。订单包含以下核心字段:租户ID:标识订单所属的租户订单ID:订单的唯一标识父订单ID:关联的父级订
- 基于STM32的智慧农业控制系统设计:python可视化、UART、I2C、TCP/HTTP技术
极客小张
stm32pythontcp/ip单片机物联网毕业设计课程设计
1.项目选题与需求分析选题背景和动机全球农业正面临着气候变化、人口增长与资源短缺等多重挑战。传统农业生产方法难以满足现代社会对高效、可持续农业的需求。智慧农业的概念应运而生,旨在通过高科技手段提升农业生产效率、降低人力成本、提高作物质量和产量。本项目设计的智慧农业大棚系统,基于STM32C8系列微控制器,集成多种传感器与执行器,旨在实现对大棚环境的智能监控与管理。目标用户和市场需求分析目标用户包括
- 分库分表后如何进行join操作
fajianchen
IT架构系统设计sql分库分表
在分库分表后的系统中,进行表之间的JOIN操作比在单一数据库表中复杂得多,因为涉及的数据可能位于不同的物理节点或分片中。此时,传统的SQLJOIN语句不能直接用于不同分片的数据,以下是几种处理这样的跨分片JOIN操作的方法:方法1:应用程序层JOIN分步查询:在应用程序中,先查询一个分片中的数据(如,获取第一个表的数据)。对于那些需要JOIN的数据,使用这些结果的数据再去另一个分片中查询。内存合并
- 强化学习中的关键模型与算法:从Actor-Critic到GRPO
人工智能
强化学习中的关键模型与算法:从Actor-Critic到GRPO强化学习中的Actor-Critic模型是什么?这与生成对抗网络(GANs)十分相似。在生成对抗网络中,生成器和判别器模型在整个训练过程中相互对抗。在强化学习的Actor-Critic模型中,也存在类似的概念:Actor-Critic(A2C、A3C)是一种流行的强化学习架构,它结合了两个组件:Actor(行动者)——学习策略($\p
- 多模态大模型:技术原理与实战 工具和算法框架介绍
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1从单模态到多模态的必然趋势传统的深度学习模型大多是单模态的,例如只处理图像数据的卷积神经网络(CNN)或只处理文本数据的循环神经网络(RNN)。然而,现实世界的信息往往是多模态的,例如一张图片可以包含物体、场景、文字等多种信息,一段视频则包含图像、声音、字幕等多种模态的数据。为了更好地理解和处理现实世界的信息,多模态学习应运而生。近年来,随着深度学习技术的快速发展,多模态学习取得
- 从零开始大模型开发与微调:汉字拼音数据集处理
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:汉字拼音数据集处理1.背景介绍1.1问题的由来在人工智能领域,自然语言处理(NLP)是一项基础且重要的研究方向。随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModel,LLM)在NLP领域取得了显著的成果。然而,LLM的训练与微调过程往往需要海量的文本数据,而这些数据通常以自然语言形式存在,难以直接用于模型训练。因此,如何从自然语言数据中提取结构
- 在Windows下安装Ollama并体验DeepSeek r1大模型
skywalk8163
人工智能windowsollamaDeepSeek人工智能
在Windows下安装Ollama并体验DeepSeekr1大模型Ollama在Windows下安装Ollama官网:Ollama·GitHub下载Windows版Ollama软件:Releasev0.5.7·ollama/ollama·GitHub下载ollama-windows-amd64.zip这个文件即可。可以说Windows拥抱开源真好,Windows下安装软件简单方便,开源软件直接到G
- AI大模型部署:Ollama与vLLM部署对比:哪个更合适?
大模型部署
langchain人工智能dockerllamaLLM程序员Ollama
前言近年来,大语言模型(LLM)的应用日益广泛,而高效的部署方案至关重要。Ollama和vLLM作为两种流行的LLM部署工具,各有优劣。本文将深入比较Ollama和vLLM的部署方式,帮助选择最合适的方案。Ollama:简单易用的LLM部署工具Ollama以其简洁的安装和易于使用的特性而闻名。其官方文档清晰易懂,即使是新手也能快速上手。Ollama支持多种LLM模型,并提供便捷的命令行界面进行管理
- 最强开源大模型炸场!全网独一份AI大模型学习实践资源...(待会删)
大模型应用
人工智能大数据promptlangchainAgentai大模型LLM
今年科技圈的热点,除了裁员,就是被各种“AI大模型”新闻刷屏。GPT、Sora还在霸榜…开源大模型又来炸场!Meta发布Llama3系列模型,号称「最强大的开源大模型」,震撼科技圈!毫不夸张地说,AI大模型正在颠覆程序员的价值!很多大厂一边裁员,一边用百万年薪挖掘懂AI大模型的人,打工人的职业危机至少被提前5年。普通程序员想在技术上不掉队,还要增加收入,关键在于——拥抱技术红利,掌握AI大模型项目
- 2024年开源数据集地址汇总包含最新最全数据集在这你可以找到任何想要数据集
萌萌哒240
深度学习目标跟踪人工智能计算机视觉
目标检测数据集和图像分类数据集是计算机视觉领域的两大重要资源,它们为训练和评估各种视觉模型提供了关键的数据支持。目标检测数据集主要用于训练模型以识别和定位图像中的特定物体。这类数据集通常包含大量的标注图像,每张图像中都标记了多个物体的位置和类别。例如,COCO(CommonObjectsinContext)数据集就是一个常用的目标检测数据集,它包含了80个类别的日常物体,如人、车、动物等,并提供了
- 物理测试暴击AI圈,DeepSeek R1稳超o1、Claude,我们已进入RL黄金时代
AI生成曾小健
LLM大语言模型人工智能
物理测试暴击AI圈,DeepSeekR1稳超o1、Claude,我们已进入RL黄金时代原创关注大模型的机器之心2025年01月25日12:06北京机器之心报道我们都没预料到,AI领域的2025年是这样开始的。DeepSeekR1真是太厉害了!最近,「神秘的东方力量」DeepSeek正在「硬控」硅谷。我让R1详细解释勾股定理。这一切都是AI在不到30秒时间里一次性完成的,没出任何错。简单来说,its
- 国产大模型 DeepSeek,能跟 ChatGPT 一战,还不用梯子,确定不试试?
集成显卡
AI/人工智能chatgpt
深度求索公司最新推出的自研MoE模型DeepSeek-V3,多项评测成绩超越了Qwen2.5-72B和Llama-3.1-405B等其他开源模型,并在性能上和世界顶尖的闭源模型GPT-4o以及Claude-3.5-Sonnet不分伯仲我尝试了下,同样的编码场景,通义千问给出的答案没有实际帮助,但是DeekSeek却告之具体的实现步骤与依据,一大利器呀!其效果跟ChatGPT比都不遑多让,关键是国内
- 深度学习专业毕业设计选题清单:算法与应用
HaiLang_IT
毕业设计选题毕业设计人工智能深度学习
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了计算机专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇总
- OpenAI 实战进阶教程 - 第1节:OpenAI API 架构与基础调用
山海青风
人工智能人工智能pythonprompt
目标掌握OpenAIAPI的基础调用方法。理解如何通过API进行内容生成。使用实际应用场景帮助零基础读者理解API的基本用法。一、什么是OpenAIAPI?OpenAIAPI是一种工具,允许开发者通过编程方式与OpenAI的强大语言模型(例如gpt-3.5-turbo和gpt-4)进行交互。简单来说,它就像一个“AI助手”,可以回答问题、生成文本、总结信息等。实际应用场景举例:**客户支持自动化:
- 一张图看懂AI技术架构!开发、训练、部署全链路深度解析!
和老莫一起学AI
人工智能数据挖掘学习llamaai大模型程序员
人工智能(AI)技术的快速发展,使得企业在AI模型的开发、训练、部署和运维过程中面临前所未有的复杂性。从数据管理、模型训练到应用落地,再到算力调度和智能运维,一个完整的AI架构需要涵盖多个层面,确保AI技术能够高效、稳定地运行。本文将基于AI技术架构全景图,深入剖析AI的开发工具、AI平台、算力与框架、智能运维四大核心部分,帮助大家系统性地理解AI全生命周期管理。一、AI开发工具:赋能高效开发,提
- 最全NVIDIA Jetson开发板参数配置和购买指南
IRevers
人工智能计算机视觉深度学习mcu嵌入式硬件
NVIDIA开发的GPU不仅在电脑显卡领域占据大量份额,在嵌入式NVIDIA的Jeston系列开发板也近乎是领先的存在,特别是NVIDIAJeston系列开发板在算力和成本的平衡上都要优于其他厂家,性价比很高,设备体积小。本博文旨在给采购NVIDIAJeston开发板的读者提供一些参数分析和指南。文章目录一、推荐总结二、NVIDIAJetson算力指标三、具体系列参数四、官方购买Jeston开发
- 什么是“知识蒸馏”
清风AI
深度学习人工智能神经网络pythonconda
定义与原理在深度学习领域不断突破的同时,模型的复杂度和计算需求也随之增加。为了解决这一问题,知识蒸馏技术应运而生,成为模型压缩和性能优化的重要手段。本节将详细介绍知识蒸馏的基本概念、工作原理和知识迁移机制。知识蒸馏是一种将大型预训练模型(教师模型)的知识转移到较小模型(学生模型)的技术。这种方法不仅能保留原有模型的性能,还能显著降低模型的复杂度和计算需求,使其更适合在资源受限的环境中部署。知识蒸馏
- o1、GPT4、GPT4o 这三个有什么区别?
开心的AI频道
人工智能
核心观点:GPT-4擅长文本处理和推理,GPT-4o主打多模态交互,而O1则专注于深度推理和逻辑分析,三者各有侧重,应用场景也大不相同。截至2024年12月,OpenAI已发布13个模型,模型能力已从最初的文本处理拓展到写作、编程、多模态和推理等,实现了从“文科生”到“全科学霸”的飞跃。然而,在众多模型中,GPT-4、GPT-4o和O1三款模型可谓是经典与转型之“模”。GPT-4作为ChatGPT
- 根据每月流量和市场份额排名前20 的AI工具列表
开心的AI频道
人工智能
ChatGPT:由OpenAI研发,是一款对话式大型语言模型。它能够理解自然语言输入,生成连贯且符合逻辑的回复。可用于文本创作,如撰写文章、故事、诗歌;还能解答各种领域的知识问题,提供翻译、代码解释等服务,在多种场景下辅助用户解决语言相关需求。Canva:作为在线图形设计平台,拥有海量的模板资源,涵盖海报、名片、社交媒体帖子、演示文稿等多种类型。用户无需专业设计技能,通过简单的拖放操作即可使用其丰
- Python内存泄漏排查
SkylerHu
PythonpythonOOM内存泄漏
Python内存泄漏排查1.排查工具1.1gc1.2tracemalloc1.3mem_top1.4guppy1.5objgraph1.6pympler1.7pyrasite2.案例分析3.参考记一次排查Python程序内存泄漏的问题。1.排查工具工具说明gcPython标准库内置模块tracemalloc推荐Python3.4以上此工具为标准库mem_top推荐是对gc的封装,能够排序输出最多的
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb