673. 最长递增子序列的个数
673. 最长递增子序列的个数
题目解析:
给定一个未排序的整数数组 nums
, 返回最长递增子序列的个数 。
注意 这个数列必须是 严格 递增的。
解题思路:
算法思路:
1. 状态表⽰:
先尝试定义⼀个状态:以 i 为结尾的最⻓递增⼦序列的「个数」。那么问题就来了,我都不知道
以 i 为结尾的最⻓递增⼦序列的「⻓度」是多少,我怎么知道最⻓递增⼦序列的个数呢?
因此,我们解决这个问题需要两个状态,⼀个是「⻓度」,⼀个是「个数」:
len[i] 表⽰:以 i 为结尾的最⻓递增⼦序列的⻓度;
count[i] 表⽰:以 i 为结尾的最⻓递增⼦序列的个数。
2. 状态转移⽅程:
求个数之前,我们得先知道⻓度,因此先看 len[i] :
i. 在求 i 结尾的最⻓递增序列的⻓度时,我们已经知道 [0, i - 1] 区间上的 len[j]
信息,⽤ j 表⽰ [0, i - 1] 区间上的下标;
ii. 我们需要的是递增序列,因此 [0, i - 1] 区间上的 nums[j] 只要能和 nums[i]
构成上升序列,那么就可以更新 dp[i] 的值,此时最⻓⻓度为 dp[j] + 1 ;
iii. 我们要的是 [0, i - 1] 区间上所有情况下的最⼤值。
综上所述,对于 len[i] ,我们可以得到状态转移⽅程为:
len[i] = max(len[j] + 1, len[i]) ,其中 0 <= j < i ,并且 nums[j] <
nums[i] 。
在知道每⼀个位置结尾的最⻓递增⼦序列的⻓度时,我们来看看能否得到 count[i] :
i. 我们此时已经知道 len[i] 的信息,还知道 [0, i - 1] 区间上的 count[j] 信
息,⽤ j 表⽰ [0, i - 1] 区间上的下标;
ii. 我们可以再遍历⼀遍 [0, i - 1] 区间上的所有元素,只要能够构成上升序列,并且上
升序列的⻓度等于 dp[i] ,那么我们就把 count[i] 加上 count[j] 的值。这样循
环⼀遍之后, count[i] 存的就是我们想要的值。
综上所述,对于 count[i] ,我们可以得到状态转移⽅程为:
count[i] += count[j] ,其中 0 <= j < i ,并且 nums[j] < nums[i] &&
dp[j] + 1 == dp[i] 。
3. 初始化:
◦ 对于 len[i] ,所有元素⾃⼰就能构成⼀个上升序列,直接全部初始化为 1 ;
◦ 对于 count[i] ,如果全部初始化为 1 ,在累加的时候可能会把「不是最⼤⻓度的情况」累
加进去,因此,我们可以先初始化为 0 ,然后在累加的时候判断⼀下即可。具体操作情况看代
码~
4. 填表顺序:
毫⽆疑问是「从左往右」。
5. 返回值:
⽤ manLen 表⽰最终的最⻓递增⼦序列的⻓度。
根据题⽬要求,我们应该返回所有⻓度等于 maxLen 的⼦序列的个数。
解题代码:
class Solution {
public:
int findNumberOfLIS(vector& nums) {
int n=nums.size();
vectordp(n,1);
vectorf(n,1);
int retlength=1;
int retcount=1;
for(int i=1;if[i])
{
dp[i]=dp[j];
f[i]=f[j]+1;
}
}
}
if(retlength==f[i])retcount+=dp[i];
else if(retlength
646. 最长数对链
646. 最长数对链
题目描述:
给你一个由 n
个数对组成的数对数组 pairs
,其中 pairs[i] = [lefti, righti]
且 lefti < righti
。
现在,我们定义一种 跟随 关系,当且仅当 b < c
时,数对 p2 = [c, d]
才可以跟在 p1 = [a, b]
后面。我们用这种形式来构造 数对链 。
找出并返回能够形成的 最长数对链的长度 。
你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。
解题思路:
算法思路:
这道题⽬让我们在数对数组中挑选出来⼀些数对,组成⼀个呈现上升形态的最⻓的数对链。像不像
我们整数数组中挑选⼀些数,让这些数组成⼀个最⻓的上升序列?因此,我们可以把问题转化成我
们学过的⼀个模型: 300. 最⻓递增⼦序列 。因此我们解决问题的⽅向,应该在「最⻓递增⼦序
列」这个模型上。
不过,与整形数组有所区别。在⽤动态规划结局问题之前,应该先把数组排个序。因为我们在计
算 dp[i] 的时候,要知道所有左区间⽐ pairs[i] 的左区间⼩的链对。排完序之后,只⽤
「往前遍历⼀遍」即可。
1. 状态表⽰:
dp[i] 表⽰以 i 位置的数对为结尾时,最⻓数对链的⻓度。
2. 状态转移⽅程:
对于 dp[i] ,遍历所有 [0, i - 1] 区间内数对⽤ j 表⽰下标,找出所有满⾜ pairs[j]
[1] < pairs[i][0] 的 j 。找出⾥⾯最⼤的 dp[j] ,然后加上 1 ,就是以 i 位置为结
尾的最⻓数对链。
3. 初始化:
刚开始的时候,全部初始化为 1 。
4. 填表顺序:
根据「状态转移⽅程」,填表顺序应该是「从左往右」。
5. 返回值:
根据「状态表⽰」,返回整个 dp 表中的最⼤值。
解题代码:
class Solution {
public:
int findLongestChain(vector>& pairs) {
sort(pairs.begin(),pairs.end());
int n=pairs.size();
vectordp(n,1);
for(int i=1;i