- 神经网络-损失函数
红米煮粥
神经网络人工智能深度学习
文章目录一、回归问题的损失函数1.均方误差(MeanSquaredError,MSE)2.平均绝对误差(MeanAbsoluteError,MAE)二、分类问题的损失函数1.0-1损失函数(Zero-OneLossFunction)2.交叉熵损失(Cross-EntropyLoss)3.合页损失(HingeLoss)三、总结在神经网络中,损失函数(LossFunction)扮演着至关重要的角色,它
- 几率odds与逻辑回归
元气小地瓜
https://www.jianshu.com/p/aa73938f32ee几率odds从Odds角度理解LogisticRegression模型的参数13December20151.引言无论在学术界,还是在工业界,LogisticRegression(LR,逻辑回归)模型[1]是常用的分类模型,被用于各种分类场景和点击率预估问题等,它也是MaxEntropy(ME,最大熵)模型[2],或者说So
- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- AttributeError: ‘tuple‘ object has no attribute ‘shape‘
晓胡同学
keras深度学习tensorflow
AttributeError:‘tuple’objecthasnoattribute‘shape’在将keras代码改为tensorflow2代码的时候报了如下错误AttributeError:'tuple'objecthasnoattribute'shape'经过调查发现,损失函数写错了原来的是这样model.compile(loss=['binary_crossentropy'],optimi
- 两种常用损失函数:nn.CrossEntropyLoss 与 nn.TripletMarginLoss
大多_C
人工智能算法python机器学习
两种用于模型训练的损失函数:nn.CrossEntropyLoss和nn.TripletMarginLoss。它们在对比学习和分类任务中各自扮演不同的角色。接下来是对这两种损失函数的详细介绍。1.nn.CrossEntropyLossnn.CrossEntropyLoss是PyTorch提供的交叉熵损失函数,通常用于多分类任务中。它结合了softmax激活函数和负对数似然损失(NegativeLo
- 深度学习与遗传算法的碰撞——利用遗传算法优化深度学习网络结构(详解与实现)
2401_84003733
程序员深度学习人工智能
self.model.add(layers.Dense(10,activation=‘relu’))self.model.build(input_shape=(4,28*28))self.model.summary()self.model.compile(optimizer=optimizers.Adam(lr=0.01),loss=losses.CategoricalCrossentropy(f
- 如何利用python实现碰撞原理
加密社
福利资源区块链python开发语言
先看图跑了大概一天这是结果具体是通过BIP39规则生成的种子数据生成完词组后,再根据词组生成姨太地址#生成随机助记词defgenerate_mnemonic():entropy=os.urandom(16)#随机生成16字节熵mnemonic=[]foriinrange(12):#生成12个助记词word_index=int.from_bytes(entropy[i:i+1],'big')%len
- 【论文简介】Circle Loss: A Unified Perspective of Pair Similarity Optimization
萝莉狼
machinelearningcirclelossdeepfeaturelearning
CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization旷世cvpr2020的一篇文章,站在更高的视角,统一了deepfeaturelearning的两大基础loss:基于class-levellabel的loss(如softmax+crossentropy)和基于pair-wiselabel的loss(如tripletloss),指出了
- 机器学习和深度学习中常见损失函数,包括损失函数的数学公式、推导及其在不同场景中的应用
早起星人
机器学习深度学习人工智能
目录引言什么是损失函数?常见损失函数介绍3.1均方误差(MeanSquaredError,MSE)3.2交叉熵损失(Cross-EntropyLoss)3.3平滑L1损失(SmoothL1Loss)3.4HingeLoss(合页损失)3.5二进制交叉熵损失(BinaryCross-EntropyLoss)3.6KL散度(KLDivergence)3.7Huber损失(HuberLoss)3.8对比
- BCEWithLogitsLoss
hero_hilog
算法pytorch
BCEWithLogitsLoss是PyTorch深度学习框架中的一个损失函数,用于二元分类问题。它结合了Sigmoid激活函数和二元交叉熵损失(BinaryCrossEntropyLoss),使得在训练过程中更加数值稳定。特点:数值稳定性:直接使用Sigmoid函数后跟BCE损失可能会遇到数值稳定性问题,特别是当输入值非常大或非常小的时候。BCEWithLogitsLoss通过内部使用Logi
- 人生百相,不过熵增熵减
captain_hwz
miscellaneous熵
这篇博文由两个问题衍生而来,分别是:“为什么除法比加法困难”、“什么是生命进化的目的”。在阅读其他人的解读时,发现都关联到了一个概念,熵。觉得十分有意思,因此记录一下自己的遐想。熵(Entropy;Entropie)起初是一个热力学函数,后发展为系统混乱程度的量度,是一个描述系统热力学状态的函数。——百度百科1、为什么除法比加法困难先说是不是,再看为什么。加减乘除四则运算在计算器中的实现原理分别如
- CrossEntropyLoss in Pytorch
xljdt1
inmathematicssoftmaxfunction(normalizedexponentialfunction)crossentropyinpytorchNLLLosscrossentropylossdoc:Thiscriterioncombinesnn.LogSoftmax()andnn.NLLLoss()inonesingleclass.importtorchimporttorch.nn
- 序贯Sequential模型
光光小丸子
通过向Sequential模型传递一个layer的list来构造该模型model=Sequential([Dense(32,input_shape=(784,)),Activation('relu'),Dense(10),Activation('softmax'),])model.compile(optimizer='rmsprop',loss='categorical_crossentropy'
- 交叉熵损失函数基本概念及公式
小桥流水---人工智能
人工智能机器学习算法深度学习
Cross-EntropyLoss1.二分类2.对于多类别分类问题,其公式可以表示为:3.公式深度挖掘解释——交叉熵损失函数公式中(log)的解释总结交叉熵损失函数(Cross-EntropyLoss)是在机器学习和深度学习中常用的一种损失函数,主要用于衡量模型输出与真实标签之间的差异,特别适用于分类任务,尤其是多类别分类问题。1.二分类交叉熵损失函数的数学公式可以有多种表示形式。对于二分类问题,
- 交叉熵损失函数(Cross-Entropy Loss)的基本概念与程序代码
小桥流水---人工智能
人工智能机器学习算法人工智能深度学习
交叉熵损失函数(Cross-EntropyLoss)是机器学习和深度学习中常用的损失函数之一,用于分类问题。其基本概念如下:1.基本解释:交叉熵损失函数衡量了模型预测的概率分布与真实概率分布之间的差异。在分类问题中,通常有一个真实的类别标签,而模型会输出一个概率分布,表示样本属于各个类别的概率。交叉熵损失函数通过比较这两个分布来计算损失,从而指导模型的优化。具体来说,对于二分类问题,真实标签通常表
- Python实现熵权法:客观求指标数据的权重
乌漆帅黑
python开发语言算法
介绍:熵权法(EntropyWeightMethod)是一种常用的多指标权重确定方法,用于评价指标之间的重要程度。它基于信息熵理论,通过计算指标数据的熵值和权重,实现客观、科学地确定指标权重,以辅助决策分析和多指标优化问题的解决。本文将介绍熵权法的基本原理,并提供Python编程语言的实现过程及示例代码,帮助理解和应用熵权法。目录1.数据准备2.计算指标熵值3.计算指标权重4.示例应用5.完整代码
- 如何通过极大似然估计 MLE Maximum Likelihood Estimation 获得 交叉熵 Cross Entropy 以及 均方损失函数 Mean Square Loss ?
shimly123456
StanfordCS229个人开发
似然函数定义以及极大似然估计MLE(完成)---------------------------------------------------------------------------------------start注意:P(A|B)并不总是等于P(B|A),原因如下:首先要明白一个事情,什么是似然函数?以下是CHATGPTMathSolver的回答:我自己解释一下,意思就是:观察到一组
- 机器学习:分类决策树(Python)
捕捉一只Diu
python机器学习决策树笔记
一、各种熵的计算entropy_utils.pyimportnumpyasnp#数值计算importmath#标量数据的计算classEntropyUtils:"""决策树中各种熵的计算,包括信息熵、信息增益、信息增益率、基尼指数。统一要求:按照信息增益最大、信息增益率最大、基尼指数增益最大"""@staticmethoddef_set_sample_weight(sample_weight,n_
- 【PyTorch】实现迁移学习框架DaNN
cofisher
PHM项目实战--建模篇PyTorchpytorch迁移学习人工智能
文章目录前言代码实现1、导入数据库关于torch.manual_seed(1)2、参数设置3、数据导入4、定义MMD损失5、定义训练函数5.1nn.CrossEntropyLoss()5.2.detach()5.3.sizeVS.shape5.4.to(DEVICE)5.5.max()5.6optimizer.zero_grad()
- 【PyTorch】实现迁移学习框架DANN
cofisher
PyTorchPHM项目实战--建模篇pytorch迁移学习人工智能
文章目录前言代码实现1、导入数据库关于torch.manual_seed(1)2、参数设置3、数据导入4、定义训练函数4.1nn.CrossEntropyLoss()4.2.detach()4.3.sizeVS.shape4.4.to(DEVICE)4.5.max()4.6optimizer.zero_grad()4.7len(data
- 【深度学习】Softmax实现手写数字识别
住在天上的云
深度学习深度学习人工智能Softmax手写数字识别驭风计划
实训1:Softmax实现手写数字识别相关知识点:numpy科学计算包,如向量化操作,广播机制等1任务目标1.1简介本次案例中,你需要用python实现Softmax回归方法,用于MNIST手写数字数据集分类任务。你需要完成前向计算loss和参数更新。你需要首先实现Softmax函数和交叉熵损失函数的计算。y=softmax(WTx+b)L=CrossEntropy(y,label)y=softm
- pix2pix图像着色学习记录(pytorch实现)
欧拉雅卡
pytorch
1、BCELossBCELoss(binary_crossentropy)二分类交叉熵损失函数,用于图片多标签分类,n张图片分m类,会得到n*m的矩阵,经过sigmoid把矩阵数值变换到0~1,然后通过如下公式计算得到:不同分类问题用到的激活函数和损失函数有所不同:分类问题名称输出层使用卷积函数对应的损失函数二分类sigmoid函数二分类交叉熵损失函数多分类softmax函数多分类交叉熵损失函数多
- TENT:熵最小化的Fully Test-Time Adaption
Scabbards_
1500深度学习笔记人工智能机器学习
论文:https://arxiv.org/abs/2006.10726代码:https://github.com/DequanWang/tent摘要在测试期间,模型必须自我调整以适应新的和不同的数据。在这种完全自适应测试时间的设置中,模型只有测试数据和它自己的参数。我们建议通过testentropyminimization(tent[1])来适应:我们通过其预测的熵来优化模型的置信度。我们的方法估
- nop-entropy可逆计算入门(1)
shushengcoder
entropy可逆计算javaspringboot可逆计算JAVA
第1步:从大佬的gitee:https://gitee.com/canonical-entropy/nop-entropy下载源码,进行本地编译,具体编译看项目下的readme,想偷懒的可以下载我编译后的jar,放到自己的maven仓库https://pan.baidu.com/s/15qANnrCh5RV-T1CYCDvMdw?pwd=kq0q我把代码上传到gitee,地址:https://gi
- 管理要做的只有一件事情,就是如何对抗熵增(8.23)
胡同学的读书笔记
1人生的智慧,是对自己定位的清晰认识,并在这基础上做出最优化的决策,懂得捉大放小。而非自持小聪明,便乐于斤斤计较。2在1998年亚马逊致股东信里,贝佐斯说:“我们要反抗熵(Wewanttofightentropy)。”3管理学大师彼得·德鲁克说:“管理要做的只有一件事情,就是如何对抗熵增。在这个过程中,企业的生命力才会增加,而不是默默走向死亡。”4物理学家薛定谔说:“自然万物都趋向从有序到无序,即
- 中断&内核熵池 entropy pool
BC锌
linux运维服务器
注册一个中断处理函数驱动程序可以通过request_irq()注册一个中断处理函数,并且激活给定的中断线,以处理中断。intrequest_irq(unsignedintirq,irq_handler_thandler,unsignedlongflags,constchar*name,void*dev);第三个参数flags:*Flags:**SA_SHIRQInterruptisshared**
- 模型训练trick篇
Icevivina
机器学习人工智能深度学习
损失函数分类任务0-1损失函数绝对值损失函数,指数损失函数exponenetialloss,,例如adaboost感知损失函数perceptronloss,,合并损失函数Hingeloss,,例如SVM交叉熵损失函数crossEntropy,也是负的对数似然函数怎么从最大似然推导?“已知输出Y,假设Y的分布,对Y的分布参数进行似然估计”。先写出预测值为y的概率表达式,假设多个样本独立同分布,则最大
- (深度学习)目标检测常见术语
kgbkqLjm
DeepLearning
文章目录AnchorIoU(Intersectionoverunion)NMS(Non-maxsuppression)RP(RegionProposal)BN(BatchNormalization)CEL(CrossEntropyLoss)SoftmaxLogisticRegressionEarlyStoppingDropoutMomentumandlearningdecayAnchor简言之就是
- 交叉熵损失函数(Cross-Entropy Loss Function)
或许,这就是梦想吧!
人工智能深度学习
交叉熵损失函数(Cross-EntropyLossFunction)在处理机器学习或深度学习问题时,损失/成本函数用于在训练期间优化模型。目标几乎总是最小化损失函数。损失越低,模型越好。交叉熵损失是最重要的成本函数。它用于优化分类模型。对交叉熵的理解取决于对Softmax激活函数的理解。我在下面写了另一篇文章来涵盖这个先决条件考虑一个4类分类任务,其中图像被分类为狗、猫、马或猎豹。上图中,Soft
- PyTorch内置损失函数汇总 !!
JOYCE_Leo16
Python损失函数pytorch深度学习计算机视觉python
文章目录一、损失函数的概念二、Pytorch内置损失函数1.nn.CrossEntropyLoss2.nn.NLLLoss3.nn.NLLLoss2d4.nn.BCELoss5.nn.BCEWithLogitsLoss6.nn.L1Loss7.nn.MSELoss8.nn.SmoothL1Loss9.nn.PoissonNLLLoss10.nn.KLDivLoss11.nn.MarginRanki
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$