%matplotlib inline
import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
import matplotlib as plt
d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip',
'fba480ffa8aa7e0febbb511d181409f899b9baa5')
data_dir = d2l.download_extract('hotdog')
train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir,'train'))
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir,'test'))
print(train_imgs)
print(train_imgs[0])
train_imgs[0][0]
hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs= [train_imgs[-i-1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2 ,8, scale=1.4)
# 图像增广
normalize = torchvision.transforms.Normalize(
[0.485, 0.456, 0.406], [0.229, 0.224,0.225]
)
train_augs = torchvision.transforms.Compose( # 训练集数据增强
[torchvision.transforms.RandomResizedCrop(224),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
normalize]
)
test_augs = torchvision.transforms.Compose( # 验证集不做数据增强
[torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
normalize]
)
# 下载resnet18,
# 老:pretrain=True: 也下载预训练的模型参数
# 新:weights=torchvision.models.ResNet18_Weights.IMAGENET1K_V1
pretrained_net = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.IMAGENET1K_V1)
print(pretrained_net.fc)
本次选择(1):将resnet18最后全连接层的输出,改成自己训练集的类别,并初始化最后全连接层的权重参数
finetune_net = pretrained_net
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)
nn.init.xavier_uniform_(finetune_net.fc.weight)
print(finetune_net)
def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=10, param_group=True):
train_iter = torch.utils.data.DataLoader(
torchvision.datasets.ImageFolder(
os.path.join(data_dir,'train'), transform=train_augs
),
batch_size=batch_size,
shuffle=True
)
test_iter = torch.utils.data.DataLoader(
torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'test'), transform=test_augs
),
batch_size=batch_size
)
device = d2l.try_all_gpus()
loss = nn.CrossEntropyLoss(reduction='none')
if param_group:
params_1x = [param for name, param in net.named_parameters()
if name not in ['fc.weight', 'fc.bias']]
trainer = torch.optim.SGD(
[{'params': params_1x}, {'params': net.fc.parameters(), 'lr': learning_rate * 10}],
lr=learning_rate, weight_decay=0.001
)
else:
trainer = torch.optim.SGD(
net.parameters(),
lr=learning_rate,weight_decay=0.001
)
d2l.train_ch13(net, train_iter, test_iter, loss,trainer, num_epochs, device)
训练模型
import time
# 在开头设置开始时间
start = time.perf_counter() # start = time.clock() python3.8之前可以
train_fine_tuning(finetune_net, 5e-5, 128, 10)
# 在程序运行结束的位置添加结束时间
end = time.perf_counter() # end = time.clock() python3.8之前可以
# 再将其进行打印,即可显示出程序完成的运行耗时
print(f'运行耗时{(end-start):.4f} s')
直接训练:整个模型都使用相同的学习率,重新训练
scracth_net = torchvision.models.resnet18()
scracth_net.fc = nn.Linear(scracth_net.fc.in_features, 2)
import time
# 在开头设置开始时间
start = time.perf_counter() # start = time.clock() python3.8之前可以
train_fine_tuning(scracth_net, 5e-4, param_group=False)
# 在程序运行结束的位置添加结束时间
end = time.perf_counter() # end = time.clock() python3.8之前可以
# 再将其进行打印,即可显示出程序完成的运行耗时
print(f'运行耗时{(end-start):.4f} s')